2025 SEMIANNUAL GROUNDWATER MONITORING REPORT NEWBERRY COUNTY CLASS THREE MUNICIPAL SOLID WASTE (MSW) LANDFILL

Prepared For: Newberry County

May 2025 SCDES Permit No. MSW-DWP-117

Facility ID: SC000131627

2025 SEMIANNUAL GROUNDWATER MONITORING REPORT

NEWBERRY COUNTY

CLASS THREE MUNICIPAL SOLID WASTE (MSW) LANDFILL

Prepared For:
Newberry County
432 Cockrell Road
Newberry, South Carolina 29108

Prepared By:
Alliance Consulting Engineers, Inc.

Post Office Box 8147

Columbia, South Carolina 29202-81

Project No. 17102-0036 May 2025

TABLE OF CONTENTS

1.0	INTE	RODUCTION	1
	1.1	GROUNDWATER MONITORING PROGRAM	4
	1.2	SITE GEOLOGY AND HYDROGEOLOGY	6
	1.3	METHANE MONITORING PROGRAM	6
2.0	DAT	A COLLECTION	9
	2.1	Groundwater	9
	2.2	Surface Water	11
3.0	GRO	OUNDWATER FLOW DIRECTIONS	12
	3.1	Lateral Groundwater Flow	12
4.0	DISC	CUSSION OF FINDINGS	16
	4.1	GROUNDWATER CHEMISTRY	16
		4.1.1 Inorganic Constituents	16
		4.1.2 Volatile Organic Compounds (VOCs) Detected	22
	4.2	SURFACE WATER - CANNONS CREEK	33
5.0	STA	TISTICAL ANALYSIS	35
	5.1	Model	35
	5.2	CONSTITUENTS TESTED	35
	5.3	Approach	36
	5.4	Results	36
6.0	MET	THANE MONITORING	39
7.0	CON	ICLUSIONS AND RECOMMENDATIONS	42
	7.1	CONCLUSIONS	42
	7.2	RECOMMENDATIONS	44

LIST OF EXHIBITS

Ехнівіт А	SITE LOCATION MAP	2
Ехнівіт В	TOPOGRAPHIC MAP	3
Ехнівіт С	SITE MAP	5
Ехнівіт D	SOILS MAP	7
Ехнівіт Е	SEPTEMBER 24 & 25, 2024 POTENTIOMETRIC MAP	14
Ехнівіт F	MARCH 24, 2025 POTENTIOMETRIC MAP	15
	LIST OF TABLES	
TABLE A	MONITORING WELL CONSTRUCTION DATA	10
TABLE B	GROUNDWATER ELEVATIONS	13
TABLE C	INORGANIC CONSTITUENTS DETECTED	17
TABLE D	Volatile Organic Compounds (VOCs) Detected	23
TABLE E	CONSTITUENTS DETECTED – CANNONS CREEK	34
TABLE F	STATISTICAL ANALYSIS RESULTS	38
TABLE G	METHANE GAS DETECTION	40
	LIST OF APPENDICES	
APPENDIX A	REPORT OF LABORATORY ANALYSIS AND FIELD DATA SHEETS	
APPENDIX B	STATISTICAL ANALYSIS RESULTS	
APPENDIX C	METHANE MONITORING FIELD DATA SHEETS	
	- Fourth Quarter 2023 to 2024 – June 28, 2024	
	- First Quarter 2024 to 2025 – November 13, 2024	
	- SECOND QUARTER 2024 TO 2025 – DECEMBER 28, 2024	
	- Third Quarter 2024 to 2025 – March 19, 2025	

1.0 INTRODUCTION

Project Title: 2025 Semiannual Groundwater Monitoring Report for

the Newberry County Class Three Municipal Solid

Waste (MSW) Landfill

Owner: Newberry County

432 Cockrell Drive

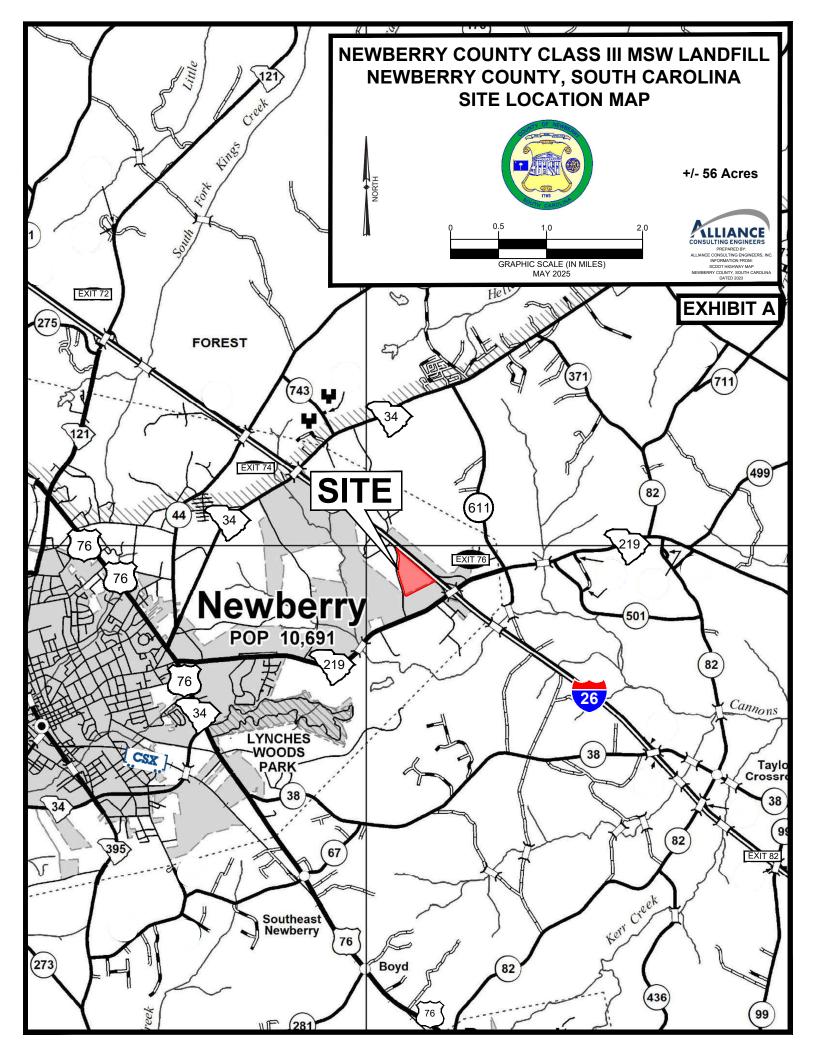
Newberry, South Carolina 29108

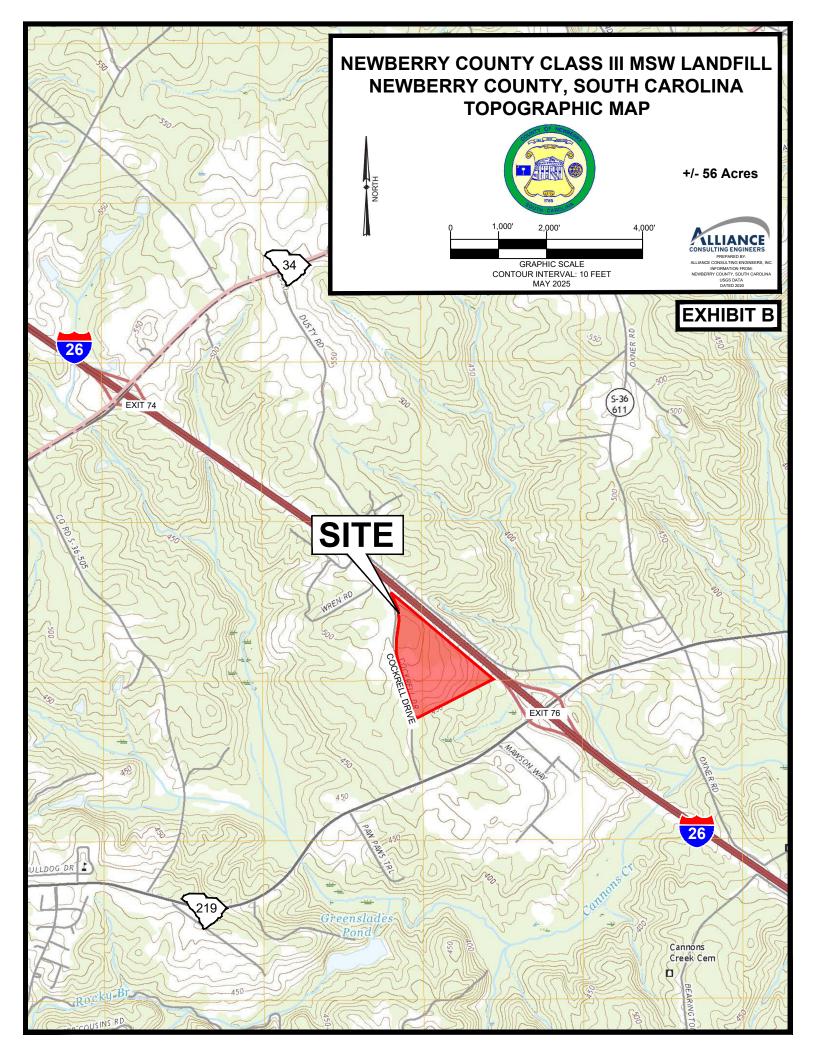
Owners Representative: Mr. Josh Rowe, Public Works Director

Consulting Engineer: Alliance Consulting Engineers, Inc.

Post Office Box 8147

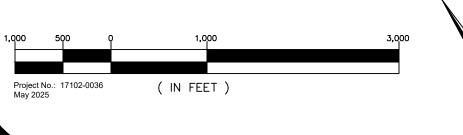
Columbia, South Carolina 29202-8147


Reps: Kyle M. Clampitt, PE, Vice President


Courtney N. Brooks, Design Associate

The Newberry County Landfill is located adjacent to the Interstate 26 and SC Highway 219 Interchange (Exit 76), and Cockrell Drive (S-643) approximately four (4) miles northeast of the City of Newberry, Newberry County, South Carolina (Exhibit A & B). The Municipal Solid Waste (MSW) Landfill stopped receiving waste in December 1993; there are two (2) disposal areas – Phase I, which is 20.8 acres, is located on the northern portion of the property, and Phase II, which is 25.4 acres, is located on the southern portion of the property. The nearest surface body of water is Cannons Creek, which is located approximately 1,500 feet to the east of the base of the Landfill. Cannons Creek flows southeasterly to the Broad River.

The 2025 Semiannual Groundwater Monitoring Report has been prepared for the Newberry County Class Three MSW Landfill, which is currently in the assessment-monitoring phase as designated by the South Carolina Department of Environmental Services (SCDES) Regulation *R61.107.19 Solid Waste Management: Solid Waste Landfills and Structural Fill*, which became effective on May 23, 2008. This Report includes a review of September 24, & 25, 2024 and March 24, 2025 groundwater chemistry data, a statistical analysis of the inorganic constituents detected since 2010, an assessment of the groundwater and surface water analytical data, methane readings, and applicable recommendations.

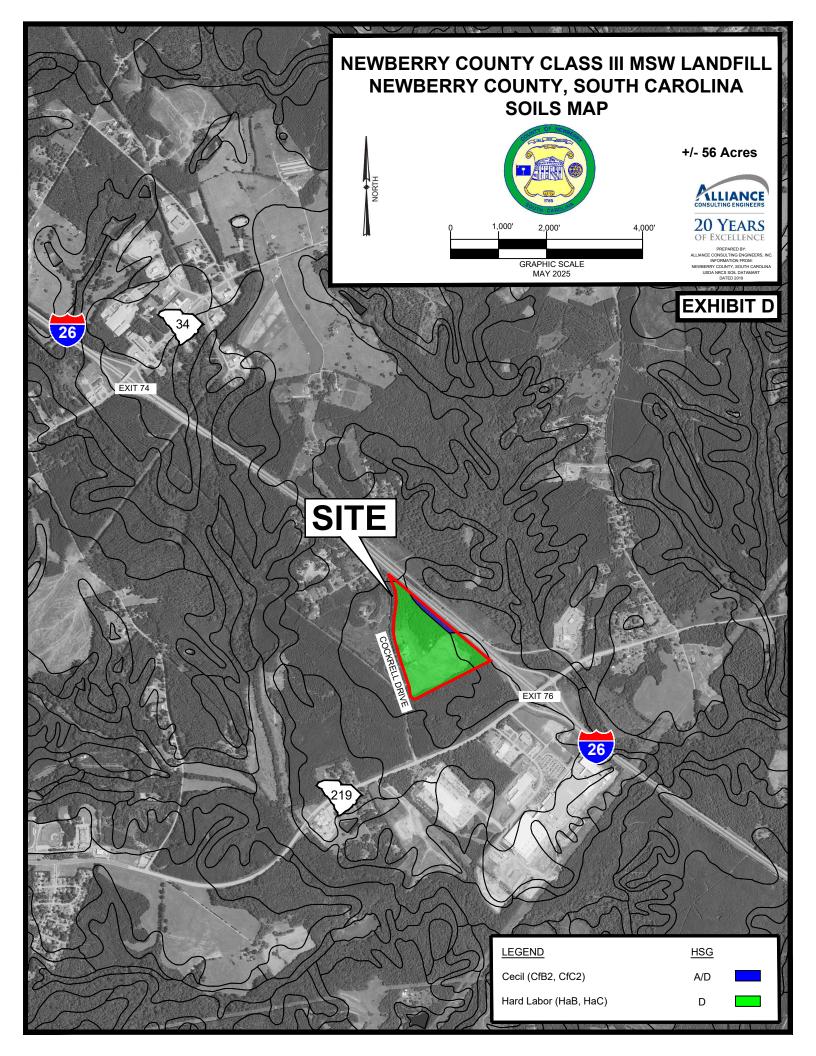

1.1 Groundwater Monitoring Program

The groundwater monitoring network for the Newberry County Class Three MSW Landfill currently consists of thirteen (13) groundwater monitoring wells (MW-1R, MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, TMW-11, TMW-12, and TMW-13) as illustrated in Exhibit C. Monitoring Well TMW-11 had not been located since April 2008 until March 20, 2019 when Alliance Consulting Engineers, Inc. personnel was able to locate TMW-11. TMW-11 has been included in the semiannual monitoring reports since the March 20, 2019 sampling event. TMW-12 has been recorded as not sampled since 2010, and TMW-13 has been recorded as unable to be sampled since the March 19, 2020 sampling event. Therefore, TMW-12 and TMW-13 were not sampled during the September 24 & 25, 2024 or the March 24, 2025 sampling events which is further discussed in *Section 2.1* of this report.

The 2014 Sampling & Analysis Plan for the Newberry County Class Three Municipal Solid Waste Landfill prepared by Rogers & Callcott Environmental, dated October 2014, was used as a guide for the groundwater sample collection activities that were conducted by Alliance Consulting Engineers, Inc. The Sampling & Analysis Plan was approved by SCDES in a letter dated August 31, 2015. A review of the Groundwater Monitoring Reports for the Newberry County Class Three MSW Landfill prepared in prior years revealed that there were discrepancies between the reports and the 2014 Sampling & Analysis Plan regarding the locations of monitoring wells TMW-10, TMW-11 and TMW-13. Based on the identification tags observed within the flush mount protective vaults for TMW-10 and TMW-13, the information obtained as a result of a March 2018 Freedom of Information (FOI) request from Alliance Consulting Engineers, Inc. to SCDES, and the well locations shown on the Groundwater Monitoring Reports prior to May 2018, it has been determined that the well locations illustrated in the 2014 Sampling & Analysis Plan are incorrect. Therefore, Alliance Consulting Engineers, Inc. has revised the labeling of the wells illustrated in Exhibit C, resulting in changes to the locations of TMW-10, TWM-11 and TMW-13 from the locations that had been indicated in the Groundwater Monitoring Reports that had been prepared prior to May 2018.

Site Map Newberry County Class III MSW Landfill Newberry County, South Carolina

The groundwater monitoring program for the Newberry County Class Three MSW Landfill specifies that groundwater samples collected from the monitoring wells be analyzed for the constituents listed in Appendix IV of SCDES Regulation (*R.*)61-107.19. SCDES approved a request to discontinue analysis for organochlorine pesticides, antimony, arsenic, beryllium, and mercury in a letter dated August 31, 2015.


1.2 Site Geology and Hydrogeology

The Newberry County Landfill is located within the southern Piedmont Region of South Carolina. The soils are very deep, moderately well drained, slowly permeable soils that formed in material weathered from felsic igneous and metamorphic rock, primarily granite and granite gneiss. The depth to groundwater on-site varies from approximately 46.78 feet below top of well casing (btc) in the vicinity of monitoring well TMW-9 to 17.49 feet btc in the vicinity of monitoring well TMW-10. The groundwater flow in the surficial aquifer is southeasterly beneath the MSW Landfill to its discharge points along Cannons Creek. The soil characteristics were determined via the Soils Map (Exhibit D) prepared by Alliance Consulting Engineers, Inc. and provided in the United States Department of Agriculture Soil Datamart for Newberry County, South Carolina dated 2019.

1.3 Methane Monitoring Program

The methane monitoring system for the Newberry County Class Three MSW Landfill has six (6) monitoring stations consisting of eleven (11) Gas Monitoring Probes (GMPs), (GMP-1S and GMP-1D, GMP-3S and GMP-3D, GMP-4S, GMP-5S and GMP-5D, GMP-6S and GMP-6D, and GMP-7S and GMP-7D) located along the perimeter of the property as shown in Exhibit C. There are ten (10) Passive Gas Vent Wells (PGV-1, PGV-2, PGV-3 PGV-4, PGV-5, PGV-6, PGV-7, PGV-8, PGV-9, and PGV-10) located along the perimeter of the landfill, and twenty-three (23) Soil Extraction Wells (EW-1 through EW-14, and EW-16 through EW-24) located along the perimeter of the property as shown in Exhibit C. In addition, the former Soil Extraction Well EW-25 appears to have been converted to a Passive Gas Vent Well.

Due to the past persistence of elevated methane concentrations in several Gas Monitoring Probes, a phased corrective measures approach was implemented by Newberry County starting in 2006. The first phase, which involved the installation of Passive Gas Vents and a Passive Vent Trench, failed to fully reduce methane concentrations below the Lower Explosive Limit (LEL); therefore, a second phase followed which involved the installation of an active subsoil gas extraction system. The gas extraction system was installed in May 2015 and continues to remain in operation at this time.

The Gas Extraction System consists of the twenty-three (23) Soil Extraction Wells described above, which are connected to a header pipe system that conveys the extracted gas through a vessel containing activated carbon which absorb odors prior to discharging the gas into the atmosphere. Per the Operation, Maintenance, and Monitoring Plan for the Newberry County Landfill Soil Gas Extraction System prepared by SCS Engineers dated May 2015, monthly maintenance and monitoring of the gas extraction system began in August 2015. Methane Monitoring for the Newberry Class III MSW Landfill occurs on a quarterly basis. A discussion of the methane monitoring results is provided in Section 6.0 – *Methane Monitoring*.

8

2.0 DATA COLLECTION

The monitoring network for the Newberry County Class Three MSW Landfill consists of thirteen (13) monitoring wells (MW-1R, MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, TMW-11, TMW-12, and TMW-13) and one (1) surface water sampling location along the bank of Cannons Creek downstream of the Landfill. During the September 24 & 25, 2024 and March 24, 2025 sampling events, it was recorded that TMW-12 and TMW-13 were unable to be sampled, which is further discussed in Section 2.1.

2.1 Groundwater

On March 24, 2025 Pace Analytical Services, LLC. (Pace) personnel collected groundwater samples from eleven (11) monitoring wells MW-1R, MW-2RR, MW-3. MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11 for analysis of the constituents approved by SCDES in the 2014 Sampling & Analysis Plan, which was used as a guide for groundwater sample collection activities. Several of the monitoring well locations were incorrectly labeled in the 2014 Sampling & Analysis Plan. The well labels were corrected during the 2019 semiannual sampling events and continue to be used for the subsequent sampling events.

The groundwater samples were properly preserved in the field by Pace sampling technicians and taken to the analytical laboratory for analysis using United States Environmental Protection Agency (EPA) Methods 6020B, 8260D, and 8011. The monitoring well construction data is summarized in Table A. The depth to the top of the groundwater was measured in the thirteen (13) monitoring wells prior to collection of groundwater samples during the March 24, 2025 sampling event. Pace personnel bailed a volume of water equal to a minimum of three (3) well volumes before sampling each monitoring well. This occurred in all the wells, with the exception of MW-3 and MW-5 which went dry during the bailing process. These wells were allowed to recover, and samples were then collected. TMW-12 and TMW-13 were unable to be sampled based on obstructions in both wells. During the December 26, 2022 and the March 20, 2023 sampling event, TMW-12 was noted that the locking plug was jammed into the well casing approximately 1.77-ft below sdf below top of casing (btc). Since

May 2025 9

TABLE A MONITORING WELL CONSTRUCTION DATA NEWBERRY COUNTY CLASS THREE MSW LANDFILL

Monitoring Well No.	Total Depth (ft btc)	Screen Setting (ft bls)
MW-1R*	60.41	48.0 - 60.49
MW-2RR	59.98	48.0 - 60
MW-3	38.78	Unknown
MW-4R	62.47	48.0 - 62.58
MW-5	33.81	Unknown
MW-6	27.25	10.0 - 27.77
MW-7R	60.41	48.0 - 62.73
MW-8	71.84	58.0 - 71.85
TMW-9	71.00	65.0 - 75.00
TMW-10	43.88	35.0 - 45.0
TMW-11	30.06	20.0 - 30.0
TMW-12	NR	22.05 - 42.05
TMW-13	NR	14.4 - 20.90

Notes:

ft btc = Feet Below Top of Casing ft bls = Feet Below Land Surface

NR - Not Recorded due to wells were unable to be sampled

^{* =} upgradient well

2018, TMW-13 has historically been recorded as bailed dry and has not recovered sufficiently enough for sample collection. The total depth (as measured inside the well casing) has changed since the time of installation from 44.44 feet btc to a total depth of 13.56 feet btc measured during the March 25 & 26, 2024 sampling event; in addition, it was noted that TMW-13 appears to have been compromised and any water in the well appears to be from stormwater based on the well does not recharge after the bailing process. During the September 21, 2023 and March 25 & 26, 2024 sampling event Pace personnel noted that TMW-13 had an obstruction in the well changing the total depth of the well. Therefore, TMW-13 does not accurately represent the consistency of the groundwater in the area. Due to these conditions, monitoring wells TMW-12 and TMW-13 were not recorded, and these wells were not included in this report.

Following removal of each volume of water from the remaining wells, the pH, temperature, turbidity, and Specific Conductance (indicator parameters) were measured. The indicator parameters, water depth measurements, and other site-specific information were recorded for each well and sampling event on Field Data Information Sheets for Groundwater Sampling. The groundwater samples were submitted to Pace's laboratory for analysis. The Field Data Sheets and the Report of Laboratory Analysis for the March 24, 2025 sampling event are provided in Appendix A.

2.2 Surface Water

A surface water sample was collected from Cannons Creek downstream of the Landfill during the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events. The water samples were collected and analyzed by Pace for the constituents listed in Appendix IV of SCDES MSW *R.61-107.19*. The results of the laboratory analysis for the March 24, 2025 sampling event are provided in Appendix A.

3.0 GROUNDWATER FLOW DIRECTIONS

Groundwater elevations obtained during the semiannual sampling events were used to determine groundwater flow characteristics beneath the Newberry County Class Three MSW Landfill.

3.1 Lateral Groundwater Flow

Water-level measurements were collected by Pace personnel from each monitoring well during the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events and are provided on Table B. Utilizing the depth to groundwater within each monitoring well, Potentiometric Maps were prepared (Exhibits E & F). The Potentiometric Maps indicate that the groundwater flow direction is southeasterly from beneath the MSW Landfill towards Cannons Creek. This observation is consistent with previous groundwater flow direction determinations for the Newberry County Class Three MSW Landfill.

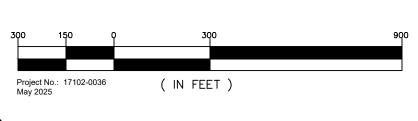
TABLE B GROUNDWATER ELEVATIONS NEWBERRY COUNTY CLASS CLASS THREE MSW LANDFILL

		Decembe	r 26, 2022	March 2	20, 2023
MW No.	Measuring Point Elevation (ft msl)	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)
MW-1R	504.92	34.62	470.30	33.84	471.08
MW-2RR	459.82	37.46	422.36	35.75	424.07
MW-3	453.92	36.10	417.82	34.61	419.31
MW-4R	441.55	33.30	408.25	31.21	410.34
MW-5	420.12	24.55	395.57	21.82	398.30
MW-6	440.55	25.96	414.59	23.79	416.76
MW-7R	457.34	38.68	418.66	35.80	421.54
MW-8	443.39	36.05	407.34	33.98	409.41
TMW-9	457.58	47.20	410.38	46.43	411.15
TMW-10	415.07	19.08	395.99	17.27	397.80
TMW-11	NR	28.11	-	24.71	-
TMW-12	468.18	NR	-	NR	-
TMW-13	409.25	NR	-	10.98*	-
			er 21, 2023	March 25	& 26, 202 4
MW No.	Measuring Point Elevation (ft msl)	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)
MW-1R	504.92	33.30	471.62	33.92	471.00
MW-2RR	459.82	37.34	422.48	35.70	424.12
MW-3	453.92	35.68	418.24	34.73	419.19
MW-4R	441.55	32.41	409.14	31.22	410.33
MW-5	420.12	24.06	396.06	21.23	398.89
MW-6	440.55	25.06	415.49	23.27	417.28
MW-7R	457.34	37.50	419.84	37.74	419.60
MW-8	443.39	35.19	408.20	33.93	409.46
TMW-9	457.58	47.11	410.47	46.57	411.01
TMW-10	415.07	18.97	396.10	16.98	398.09
TMW-11	NR	26.97	-	23.42	-
TMW-12	468.18	NR	-	NR	-
TMW-13	409.25	NR	-	NR	-
		September 2	24 & 25, 2024	March 2	24, 2025
	Measuring Point	Depth to	Groundwater	Depth to	Groundwater
MW No.	Elevation (ft msl)	Groundwater (ft)	Elevation (ft msl)	Groundwater (ft)	Elevation (ft msl)
MW-1R	504.92	32.93	471.99	34.04	470.88
MW-2RR	459.82	37.22	422.60	37.41	422.41
MW-3	453.92	35.42	418.50	35.74	418.18
MW-4R	441.55	31.51	410.04	30.85	410.70
MW-5	420.12	22.75	397.37	20.71	399.41
MW-6	440.55	23.50	417.05	22.18	418.37
MW-7R	457.34	34.81	422.53	33.40	423.94
MW-8	443.39	34.30	409.09	33.63	409.76
TMW-9	457.58	46.79	410.79	46.78	410.80
TMW-10	415.07	18.40	396.67	17.49	397.58
TMW-11	NR	23.64	-	21.76	-
TMW-12	468.18	NR	-	NR	-
TMW-13	409.25	NR	-	NR	-

Notes:

ft msl = feet above mean sea level

ft btc = feet below top of casing


NR - Not Recorded

*Pace Analytical Services noted during the March 20, 2023 sampling event that TMW-12 and TMW-13 appear to have obsructions and have not been measured since.

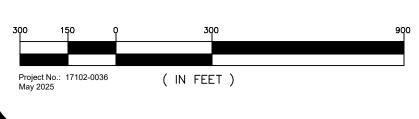

September 24 & 25, 2024 Potentiometric Map of the Newberry County Class III MSW Landfill **Newberry County, South Carolina**

EXHIBIT E

March 24, 2025 Potentiometric Map of the Newberry County Class III MSW Landfill Newberry County, South Carolina

4.0 DISCUSSION OF FINDINGS

The results of the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events for the eleven (11) monitoring wells (MW-1R, MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11) and the surface water sample collected from Cannons Creek are summarized below. As discussed in Section 2.1 – *Groundwater*, Monitoring Wells TMW-12 and TMW-13 were unable to be sampled during the September 24 & 25, 2024 and March 24, 2025 sampling events; therefore, these monitoring wells were not included in the report. The analytical results for the groundwater samples collected from the remaining eleven (11) monitoring wells during the March 24, 2025 semiannual sampling event are included in Appendix A.

4.1 Groundwater Chemistry

Constituents from the monitoring wells detected in excess of their practical quantitation limits (pqls) and Maximum Contaminant Levels (MCLs) or Action Levels in the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events are divided into inorganic and organic compounds.

4.1.1 Inorganic Constituents

A list of the inorganic constituents detected at the Newberry County Class Three MSW Landfill since 2010 is provided in **Table C**. A review of the analytical data from the monitoring wells for the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events is provided below.

September 24 & 25, 2024 Semiannual Sampling Event: A review of the analytical data from the groundwater samples collected from the monitoring wells during the September 24 & 15, 2024 semiannual sampling event indicated three (3) inorganics constituents (Barium, Cobalt, Zinc) were detected in excess of their pqls, and one (1) constituent (Barium) was detected in excess of its MCL (Table C).

Barium was detected in the groundwater samples collected from MW-1R, MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11 at concentrations of 127 micrograms per liter (μg/L), 3,270 μg/L, 1,010 μg/L,

On a different	MOL		MW 4D				LASS T				TANALO	There do	TABALAA	Thilly 40	TRUM 40
Constituent	MCL	pql	MW-1R	MW-2RR	MW-3	MW-4R	MW-5	MW-6	MW-7R	MW-8	IMW-9	1MW-10	IMW-11	1MW-12	TMW-13
Barium	2000		00	4500	000		21-22, 20		500	00	500	500	NC	NC	440
Beryllium	2000	- <5	90 0.16B	1500 0.64B	860 0.080B	800	1940 17	420 0.29B	580 0.070B	96 0.14B	580 2.0B	580 2.0B	NS NS	NS NS	440 2.2B
Cadmium	5	<5	0.100	0.04D	0.0000		14	0.296	0.070B	0.146	2.00	2.00	NS	NS	2.20
Chromium	100	-	0.63B	0.82B	2.3B	1.3B	48	1.1B	3.3B	0.46B	3.3B	3.3B	NS	NS	12
Cobalt	-	<10	0.000	0.020	39	8.1B	56	13	2.8B	0.400	6.1B	6.1B	NS	NS	7.1B
Copper	1,300	<10			- 00	0.15	62	-10	2.00		8.4B	8.4B	NS	NS	8.4B
Lead	15	<15		2.2B	2.5B	1.9B	140	3.8B	2.5B		15	15	NS	NS	22
Nickel	-	<40		1.6B	1.7B	1.02	27B	3.8B	2.02	1.4B	3.8B	3.8B	NS	NS	2.1B
Silver	-	<10			0.6B	0.92B		0.76B					NS	NS	
Thallium	2	<20								2.5B			NS	NS	
Vanadium	-	<20		5.1B	3.8B	4.3B	180	6.7B	3.9B		33	33	NS	NS	26
Zinc	-	<20		43	5.5B	10B	1440	40	9.8B		14	14	NS	NS	150
Cyanide	200	<10			5B				4B		4.2B	4.2B	NS	NS	
Mercury	2	<0.2		0.17B			0.22	0.07B	0.34		0.52	0.52	NS	NS	1.02
						Decer	nber 1-2, 2	2010							
Barium	2000	-	161	2310	1120	846	524	507	474	103	742	194	NS	NS	1950
Cadmium	5	<5					7.5						NS	NS	
Chromium	100	<10											NS	NS	16.8
Cobalt	-	<20			32.5								NS	NS	
Copper	1,300	<10											NS	NS	11.5
Lead	15	<10			12.9								NS	NS	30.5
Selenium	50	<20					46-		22.8				NS	NS	
Tin	-	<25	6.2B		13B		19B						NS	NS	33
Vanadium	-	<10		07.0	15	04.0	400	440			44.0		NS	NS	15.5
Zinc	-	<20		67.6	65.3	31.6	130	110		0.00	44.6	0.00	NS	NS	212
Mercury	2	<0.2	0000							0.33		0.29	NS	NS	1.01
Sulfide	-	<2000	9600			Fab.		040					NS	NS	
Parium.	2000		200	2270	2440	800	u ary 6-7, 2 110	980	420	150	1070	180	NS	NS	240
Barium Beryllium	4	- <5	0.51J	2270 1.2J	2410	600	110	0.55J	420	150	1070	160	NS	NS	240
Cadmium	5	<5	0.513	1.ZJ	27 2.5J			3.2J					NS	NS	
Chromium	100	<10			1.9J			2J			1.5J		NS	NS	4.2J
Cobalt	-	<10	1.1J		41	9.9J		3.2J	1.9J		1.6J		NS	NS	1.8J
Copper	1,300	<10	3.4J		22	5.50		6.6J	1.50		5.8J		NS	NS	1.00
Lead	15	<15	4.3J	4.4J	110			17			8.2J		NS	NS	8J
Nickel	-	<40							2.3J				NS	NS	
Vanadium	-	<20	7.2J	14J	190	5.3J		47	4.3J		21	1.8J	NS	NS	9.3J
Zinc	-	<20	26	62	730		16J	610	6.4J	5.9J	87	6.2J	NS	NS	69
Cyanide	200	<10		18	16	1600	164.8	6.8J	152.4		3.2J	16.4	NS	NS	4.4J
Mercury	2	<0.2			1.2			0.21		2.71	0.17J	0.44	NS	NS	0.24
						Augu	st 30-31, 2	2012							
Arsenic	10	<10			NS			NS	6.4J		3.6J		NS	NS	
Barium	2000	-	610	2390	NS	790	150	NS	390	160	1010	400	NS	NS	1650
Beryllium	4	<5	6.8	5.1	NS	0.13J	0.25J	NS	1.4J		1J	2.1J	NS	NS	9.5
Cadmium	5	<5	1.5J		NS	1.7J	2.3J	NS					NS	NS	
Chromium	100	<10	3.4J		NS		1.8J	NS					NS	NS	35
Cobalt	-	<10	8.8J	4.2J	NS	11	0.64J	NS	3.8J		2.3J	2.3J	NS	NS	21
Copper	1,300	<10	23		NS	5.7J	4J	NS	4.3J		3J	15	NS	NS	23
Lead	15	<15	16		NS			NS				34	NS	NS	66
Silver	-	<10	4.5.		NS	46.		NS	4 = :			0.65J	NS	NS	
Thallium	2	<20	4.2J	0.1	NS	16J	0.01	NS	4.7J	4	441	4	NS	NS	
Vanadium	-	<20	37	34	NS	17J	2.9J	NS	8J	1.7J	14J	17J	NS	NS	82
Zinc	-	<20	93	150	NS	7.9J	35	NS	9.8J	18J	59	65	NS	NS	550
Cyanide Mercury	200	<10 <0.2	0.16J	0.23	NS NS	0.15J	0.14J	NS NS	2.6J 0.15J	3.45	0.38	0.55	NS NS	NS NS	0.55
wercury		~U.Z	U. 10J	0.23	ONI		uary 21, 2		0.100	5.45	0.30	0.55	149	149	0.55
			140	2050	NS	440	130	NS	300	150	770	54	NS	NS	190
Barium	2000		· 14U			440	130	NS NS	300	100	110	54	NS NS	NS NS	190
Barium Baryllium	2000	- <Λ		21	NG										1
Beryllium	4	<4		2J 7.I	NS NS				351	101	3 1 1				
Beryllium Cadmium	4 5	<4 <5	3.3J	2J 7J	NS			NS	3.5J 3.6J	1.9J	3.1J		NS	NS	251
Beryllium Cadmium Chromium	4 5 100	<4 <5 <10			NS NS	6 9.1		NS NS	3.6J	1.9J	3.1J		NS NS	NS NS	2.5J
Beryllium Cadmium Chromium Cobalt	4 5 100	<4 <5 <10 <10	3.3J		NS NS NS	6.9J		NS NS NS		1.9J		13.1	NS NS NS	NS NS NS	2.5J
Beryllium Cadmium Chromium Cobalt Copper	4 5 100 - 1,300	<4 <5 <10 <10 <10		7J	NS NS NS	19J		NS NS NS	3.6J 2.6J	1.9J	8.7J	13J	NS NS NS	NS NS NS	
Beryllium Cadmium Chromium Cobalt Copper Vanadium	4 5 100	<4 <5 <10 <10 <10 <20	3.3J 11J	7J 22	NS NS NS NS	19J 7.8J	36	NS NS NS NS	3.6J 2.6J 6.4J		8.7J 6.8J		NS NS NS NS	NS NS NS NS	9.2J
Beryllium Cadmium Chromium Cobalt Copper Vanadium Zinc	4 5 100 - 1,300 -	<4 <5 <10 <10 <10 <20 <20	3.3J	7J	NS NS NS NS NS	19J 7.8J 32	36 1.6J	NS NS NS NS NS	3.6J 2.6J 6.4J 16J	1.9J 16J	8.7J	13J 160	NS NS NS NS NS	NS NS NS NS NS	
Beryllium Cadmium Chromium Cobalt Copper Vanadium	4 5 100 - 1,300	<4 <5 <10 <10 <10 <20	3.3J 11J	7J 22	NS NS NS NS	19J 7.8J	36 1.6J	NS NS NS NS	3.6J 2.6J 6.4J		8.7J 6.8J		NS NS NS NS	NS NS NS NS	9.2J

Notes:

* = Action level

MCL = Maximum Contaminant Level

pqI = practical quantitation limit μ g/L = micrograms per Liter

J = Estimated Value

Bolded concentrations indicate the MCL or action level has been exceeded at the time of sampling.

NS - Not Sampled - TMW-11 has not been located since April 4, 2008. TMW-12 was dry or had insufficient volume

				NEWBE							TT 0 0 0 0 0	TERRI 61 64 64		TER 61 64 6 6	
Constituent	MCL	pql	MW-1R	MW-2RR	MW-3	MW-4R	MW-5 ust 29, 20	MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-1
Arsenic	10	<10	ı	12	NS	Aug	ust 29, 20	NS	ı		ı		NS	NS	14
Arsenic Barium	2000	-	72	2500	NS NS	610	100	NS NS	320	160	800	270	NS NS	NS NS	730
Beryllium	4	<1	12	4.5	NS	010	100	NS	320	100	000	210	NS	NS	5.3
Cadmium	5	<1		4.0	NS			NS					NS	NS	2.3
Chromium	100	<5			NS			NS					NS	NS	31
Cobalt	-	<1		1	NS	8.9		NS	3.9				NS	NS	1.3
Copper	1,300	<5		-	NS			NS					NS	NS	34
Lead	15	<5		34	NS			NS				10	NS	NS	58
Vanadium	-	<5		38	NS	5.9		NS	9.5				NS	NS	84
Zinc	-	<10		180	NS		13	NS	12	27	20	25	NS	NS	430
Cyanide	200	<5			NS			NS	6.4				NS	NS	
Mercury	2	<0.2			NS	Fab.u.		NS		9.3		0.3	NS	NS	0.3
Antimony	6	<5	7.16		NS	Febru	ıary 4-5, 2 I	NS NS	ı		9.21		NS	NS	1
Barium	2000	-	131	3420	NS	711	108	NS	351	177	894	261	NS	NS	182
Beryllium	4	<1		3.18	NS		.00	NS					NS	NS	.02
Cadmium	5	<0.7	0.96	0.811	NS			NS					NS	NS	
Cobalt	-	<5		5.75	NS	10.4		NS					NS	NS	
Copper	1,300	<5	7.51	3.67	NS			NS			3.83	2.54	NS	NS	
Lead	15	<5	2.11	24.7	NS			NS			1.81	5.08	NS	NS	1.84
Nickel	-	<5			NS			NS			12.9		NS	NS	
Vanadium	-	<5		26.3	NS			NS					NS	NS	
Zinc	-	<10	18.2	138	NS		17.5	NS	11.3		57.4	17.8	NS	NS	24.4
Mercury	2	<0.2		0.26	NS	N/		NS		2		0.32	NS	NS	0.37
							nber 3-4, 2								
Antimony	6	<5 -5	86	1800	920	570	250	460	310	160	810	220	NS	NS	130
Arsenic	10	<5			3		40						NS	NS	
Lead	15 2	<2 <0.2			18		10			4.0		0.5	NS NS	NS NS	0.5
Mercury		<0.2				Febru	l uary 3-4, 2	015		1.2		0.5	NS.	INS	0.5
Barium	2000		100	240	NS	590	300	NS	280	150	810	200	NS	NS	130
Beryllium	4	<2		2	NS			NS					NS	NS	
Lead	15	<2		4	NS		14	NS					NS	NS	
Mercury	2	<0.2			NS			NS		1.4		0.45	NS	NS	0.44
							27-28, 20	15							
Barium	2000	-	180	200	NS	620	370	NS	250	170	1100	210	NS	NS	200
Lead	15	<2			NS		18	NS		0.21	4		NS	NS	2
Danisma	2000		470	200	070		ary 11-12,		400	470	040	000	NC	NC	140
Barium Lead	2000 15	- <2	170	200	270	810	260 11	460	190	170	910	230	NS NS	NS NS	140
pH (units)	10	٦2	6.20	5.80	6.60	6.60	5.70	6.30	6.30	5.70	5.80	5.70	NS	NS	5.60
Sp. Cond. (umhos/cr	m)		79	822	692	1150	93	1000	245	161	555	236	NS	NS	133
ор. сена (антеско	••,		10	ULL	002		st 17-18, 2		2.0		000	200			
Barium	2000	-	88	307**	161	656	101	427	199	201	193**	227	NS	NS	125
Lead	15	<2					3						NS	NS	
pH (units)			7.00	5.70	6.10	6.50	5.50	6.10	5.90	5.10	5.90	5.40	NS	NS	5.70
Sp. Cond. (umhos/cr	m)		126	2480	316	938	84	757	241	167	535	237	NS	NS	125
							ch 24, 20								
Barium	2000	25	170	350**	190	660	99	330	81	210	186***	220	NS	NS	140
Lead	15	<2	2.2										NS	NS	1.4
pH (units)			6.05	6.09	6.42	6.81	6.00	6.26	6.45	5.72	5.81	5.77	NS	NS	5.78
Sp. Cond. (umhos/cr	m)		89	1090	356	960	104	545	124	175	546	242	NS	NS	119
Parium	2000	25	450	2500	270		mber 6, 2		120	220	1200	250	NS	NS	160
Barium Lead	2000 15	25 <2	450 8.5	3500	370	630	98	260	120	220	1200 4.7	250 3.8	NS NS	NS NS	160
pH (units)	10	~2	6.07	6.24	6 4 4	6 96	5.00	6.28	6.43	5.75	5.81	5.76	NS NS	NS NS	5.61
Sp. Cond. (umhos/cr	m)		97	6.21 1370	6.44	6.86 1000	5.99 103	483	192	199	605	267	NS NS	NS NS	132
op. cona. (uninos/ci	,		31	1370	002		ch 19, 20		132	133	000	201	140	140	102
Barium	2000	25	170	5400	450	600	100	290	220	230	950	230	NS	NS	230
Lead	15	<2	2			1	1			T	1	1	NS	NS	4.2
pH (units)	•	-	6.15	6.21	6.40	6.80	5.83	6.54	6.18	5.72	5.79	5.77	NS	NS	5.75
Sp. Cond. (umhos/cr	m)		94	1410	652	876	96	359	293	186	547	243	NS	NS	138
Notes: * = Action level **= Dilution Factor of 10 ***=Dilution Factor of 5 MCL = Maximum Contami pql = practical quantitation															

				NEWBE		OUNTY C			SW LAN	DFILL					
Constituent	MCL	pql	MW-1R	MW-2RR	MW-3	MW-4R	MW-5	MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-13
							mber 21, 2								
Barium	2000	25	250	4100	900	630	1100	270	210	240	990	360	NS	NS	NS
Lead	15	<2	3.3	2.2	13		60	3.1				24	NS	NS	NS
pH (units)			5.60	6.0	6.0	6.60	6.0	5.70	5.80	5.10	5.10	5.20	NS	NS	NS
Sp. Cond. (umhos/cn	1)		86	1440	813	851	148	312	245	184	547	236	NS	NS	NS
							rch 8, 201								
Barium	2000	25	370	3500	720	430	340	730	220	230	990	270	NS NS	NS NS	140
Lead	15	<2	7.5	0.40	6.9	0.00	15	0.40	F 00	F 40	F F0	7.7			2.1
pH (units) Sp. Cond. (umhos/cn	۵۱		6.00	6.10	6.50	6.90	5.80 119	6.10 704	5.90 769	5.40 200	5.50 613	5.70 264	NS NS	NS NS	NR 246
Sp. Cona. (uninos/cn	1)		102	1630	731	667 Sente	mber 26, 2		709	200	013	204	NO	NS	240
Barium	2000	5	185	3380	590	601	188	590	155	272	1030	246	1390	NS	NS
Lead	15*	5	100	3300	550	001	100	550	100	212	1000	240	38.9	NS	NS
pH (units)	10		5.30	6.10	6.00	6.70	5.60	5.90	5.80	5.60	5.80	5.60	5.00	NS	NS
Sp. Cond. (umhos/cn	n)		94	1585	706	897	102	590	196	215	612	260	56	NS	NS
, ,							ch 19, 202								
Barium	2000	5	132	2910	DRY	479	244	269	189	235	981	234	285	NS	111
Lead	15*	5			DRY		13.7							NS	
pH (units)			5.90	6.40	DRY	6.70	6.40	6.40	6.10	5.70	5.90	5.70	5.50	NS	5.60
Sp. Cond. (umhos/cn	1)	-	96	1637	DRY	660	106	467	248	204	636	254	35	NS	122
							er 23 & 24								
Barium	2000	5	148	3530	646	797	227	188	253	276	1170	269	820	NS	NS
Lead	15*	5					9.8						23.9	NS	NS
pH (units)			5.70	6.10	5.90	6.40	6.00	5.70	5.80	5.50	5.70	5.40	5.10	NS	NS
Sp. Cond. (umhos/cn	1)		92	1562	677	1021	95	402	171	216	624	258	46	NS	NS
Parium	2000	E	124	2220	670		19 & 20,		160	262	1020	244	00.2	NC	NC
Barium	2000	<u>5</u>	131	3330	670	732	100	418	160	263	1030	244 5.2	98.3	NS NS	NS NS
Lead	15*	υ	5.40	11.7 6.40	6.20	6.60	5.70	6.00	6.00	5.60	5.70	5.60	4.80	NS NS	NS NS
pH (units) Sp. Cond. (umhos/cn	n)		92	1606	752	1046	95	436	192	217	650	256	4.80	NS NS	NS NS
op. cona. (uninos/cn	.,		32	1000	132		mber 29, 2		1.02	-11	. 550		1 70		.,,0
Barium	2000	5	110	3200	860	870	98	230	170	290	1100	270	170	NS	NS
Lead	15*	5	T		5.3				T					NS	NS
pH (units)			5.70	6.40	6.20	6.60	5.80	6.40	6.10	5.60	5.90	5.60	5.70	NS	NS
Sp. Cond. (umhos/cn	1)		91	1578	767	1157	89	395	194	224	637	259	53	NS	NS
						March	29 & 30,	2022							
Barium	2000	5	126	2800	678	722	94.6	315	184	284	1100	245	76.8	NS	NS
Lead	15*	5		7.2		5.4								NS	NS
pH (units)			5.70	6.30	6.40	6.80	5.70	6.10	6.00	5.70	5.90	5.60	5.60	NS	NS
Sp. Cond. (umhos/cn	1)		92	1649	704	1069	90	473	226	235	644	262	49	NS	NS
Darium	2000	-	100	2452	070		nber 26, 2		174	200	1040	200	100	NC	NC
Barium Load	2000 15*	<u>5</u>	190	3150	670	699	103	377	171	308	1040	260	192	NS NS	NS NS
Lead pH (units)	10	υ	5.80	6 6.40	6.20	6.80	5.50	6.30	6.10	5.80	6.10	5.80	5.00	NS NS	NS NS
Sp. Cond. (umhos/cn	n)		89	1635	712	1054	96	568	199	247	631	260	5.00	NS	NS
-p. 20a. (aminos/on	,		09	1000	, 12		ch 20, 20								
Barium	2000	5	127	2920	940	557	101	588	166	306	1070	258	105	NS	NS
pH (units)		-	5.1	5.7	5.6	7.2	5.8	5.3	5.4	8.4	6.0	5.7	5.6	NS	NS
Sp. Cond. (umhos/cn	n)		91	1707	962	803	45	373	187	244	671	259	46	NS	NS
						Septe	mber 21, 2	2023							
Barium	2000	5	116	3010	850	615	88.8	149	91.6	296	1040	253	189	NS	NS
Cobalt	-	5		12.2	39.1	8.4		7.8						NS	NS
Zinc	5,000	10		27.2			12.3	12.7			15.8		34.8	NS	NS
pH (units)			6.0	6.4	6.4	6.9	5.7	6.1	6.3	5.8	5.9	5.7	5.4	NS	NS
Sp. Cond. (umhos/cn	1)		79	1477	737	819	96	251	110	224	669	270	49	NS	NS
Darium	2000	-	150	2.000	4.050		25 & 26,		175	227	1 110	270	62.2	NC	NC
Barium Cadmium	2000 5	5 1	156	3,020 4.9	1,250	519	105	394	175	337	1,110	270	63.2	NS NS	NS NS
Cadmium	5	5	-	4.9 17.5	60.9	7.7		23.5						NS NS	NS NS
Lead	- 15*	5	 	9.1	8.00	1.1		20.0						NS	NS
Thallium	2	0.2	l	0.35										NS	NS
Vanadium	-	5		9.3										NS	NS
Zinc	5,000	10		178	12.9			12.5			11.3			NS	NS
pH (units)	,	-	5.4	6.2	6.2	6.7	5.3	5.9	5.8	5.0	5.9	5.7	5.2	NS	NS
Sp. Cond. (umhos/cn	n)		90	1819	1133	725	97	588	187	260	701	266	50	NS	NS
Notes:	-					_	•		•						

Sp. Cond. (umnos/cm)

Notes:

* Action level

MCL = Maximum Contaminant Level

pql = practical quantitation limit

µg/L = micrograms per Liter

Bolded concentrations indicate the MCL or action level has been exceeded at the time of sampling.

Concentrations that are not shown do not exceed their pql at the time of sampling.

NS - Not Sampled - TMW-12 and TMW-13 was recorded as dry or had insufficient volume

TMW -11 was located after the March 2019 sampling event.

				1121102	11111 01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LA00 11		OTT EATT	<u> </u>					
Constituent	MCL	pql	MW-1R	MW-2RR	MW-3	MW-4R	MW-5	MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-1
						Septemb	er 24 & 2	5, 2024							
Barium	2000	5	127	3270	1010	650	97.3	357	106	335	1240	284	211	NS	NS
Cobalt	-	5		13.5	37.5	8.7		20.9						NS	NS
Zinc	5,000	10		39.9							14.2		31.5	NS	NS
pH (units)			5.7	6.3	6.4	6.8	5.4	6.2	5.9	5.7	5.8	5.6	5.5	NS	NS
Sp. Cond. (umhos/cn	n)		89	1814	814	890	130	591	128	270	723	278	64	NS	NS
						March	25 & 26, 2	2024							
Barium	2000	5	144	2990	737	687	92.3	392	118	275	1220	263	275	NS	NS
Cobalt	-	5		12.8	23.4	9.5		26						NS	NS
Cadmium	5	1		2.7					1.6					NS	NS
Zinc	5,000	10	15	51	37.4			11			17.2			NS	NS
pH (units)			5.8	6.5	6.4	6.8	5.6	6.2	6.0	5.7	5.9	5.7	5.2	NS	NS
Sp. Cond. (umhos/cn	n)		84	1698	599	873	89	610	126	232	708	271	69	NS	NS
Notes: * = Action level MCL = Maximum Contamir pql = practical quantitation µg/L = micrograms per Lite Bolded concentrations ind Concentrations that are no NS - Not Sampled - TMW-	limit er icate the MC t shown do r	not exceed t	heir pql at th	e time of sam	ıpling.										

- 650 μ g/L, 97.3 μ g/L, 357 μ g/L, 106 μ g/L, 335 μ g/L, 1,240 μ g/L, 284 μ g/L, and 211 μ g/L, respectively. The MCL for Barium is 2,000 μ g/L and the pql is 5 μ g/L;
- <u>Cobalt</u> was detected in the groundwater samples collected from MW-2RR, MW-3, MW-4R, and MW-6, at concentrations of 13.5 μg/L, 37.5 μg/L, 8.7 μg/L, and 20.9 μg/L, respectively. The pql for Cobalt is 5 μg/L;
- Zinc was detected in the groundwater samples collected from MW-2RR, TMW-9, and TMW-11 at concentrations of 39.9 μg/L, 14.2 μg/L, and 31.5 μg/L, respectively. The MCL for Zinc is 5,000 μg/L and the pql is 10 μg/L;
- The <u>pH</u> was found to range from 5.4 units in MW-5 to 6.8 units in MW-4R; and
- The <u>Specific Conductance</u> was found to range from 64 micromhos per centimeter (μmhos/cm) in TMW-11 to 1,814 μmhos/cm in MW-2RR.

March 24, 2025 Semiannual Sampling Event: A review of the analytical data from the groundwater samples collected from the monitoring wells during the March 24, 2025 semiannual sampling event indicated four (4) inorganic constituents (Barium, Cadmium, Cobalt, and Zinc) were detected in excess of their pqls, and one (1) constituent (Barium) was detected in excess of its MCL (Table C).

• <u>Barium</u> was detected in the groundwater samples collected from MW-1R, MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11 at concentrations of 144 μg/L, **2990 μg/L**, 737 μg/L, 687 μg/L, 92.3 μg/L, 392 μg/L, 118 μg/L, 275 μg/L, 1,220 μg/L, 263 μg/L, and 78.6 μg/L, respectively. The MCL for Barium is 2,000 μg/L and the pql is 5 μg/L;

- <u>Cadmium</u> was detected in the groundwater sample collected from MW-2RR and MW-7 at a concentration of 2.7 μg/L and 1.6 μg/L.
 The MCL for Cadmium is 5 μg/L and the pql is 1 μg/L;
- <u>Cobalt</u> was detected in the groundwater samples collected from MW-2RR, MW-3, MW-4R, and MW-6, at concentrations of 12.8 μg/L, 23.4 μg/L, 9.5 μg/L, and 26.0 μg/L, respectively. The pql for Cobalt is 5 μg/L;
- Zinc was detected in the groundwater samples collected from MW-1R, MW-2RR, MW-3, MW-6, and TMW-9, at concentrations of 15 μg/L, 51 μg/L, 37.4 μg/L, 11 μg/L, and 17.2 μg/L, respectively. The MCL for Zinc is 5,000 μg/L and the pql is 10 μg/L;
- The <u>pH</u> was found to range from 5.0 units in TMW-11 to 6.7 units in MW-4R; and
- The <u>Specific Conductance</u> was found to range from 50 μmhos/cm in TMW-11 to 1,819 μmhos/cm in MW-2RR.

4.1.2 Volatile Organic Compounds (VOCs) Detected

A list of the Volatile Organic Compounds (VOCs) detected at the Newberry County Class Three MSW Landfill since 2007 are shown in **Table D**. A review of the analytical data from the monitoring wells for the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events are summarized below.

September 24 & 25, 2024 Semiannual Sampling Event:

Thirteen (13) VOCs were detected in excess of their pqls and Methylene Chloride, Trichloroethene, and Vinyl Chloride were detected in excess of their MCLs during September 25 & 26, 2024 semiannual sampling event (Table D).

• <u>Benzene</u> was detected in the groundwater samples collected from MW-2RR, MW-3, MW-4R MW-8, TMW-9, and TMW-10 at concentrations of 4.3 μg/L, 1.7 μg/L, 1.1 μg/L, 2.8 μg/L, 1.8 μg/L,

TABLE D VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L) NEWBERRY COUNTY CLASS THREE MSW LANDFILL

1-Conforcehune										ANDFIL						
	Constituent	MCL	pql	MW-1R	MW-2RR	MW-3			MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-13
1.10estoordenferen	1 1-Dichloroethane	I -	<1 0	3.4	27	23		, 2007		20	2.6	11	41		NIS	NS
2.2.Delicordenzere				J. 4					<u> </u>	2.3	۷.0	- ' '				
Abarberionemorement 75 450 6.8 7.5 5 8 8 1.9 1.9 1.0 1	1,2-Dichlorobenzene				0.0	0.2							0.0			
Second commendation	1,4-Dichlorobenzene					7.5	5					1.9				
Procedure 100 40 50 72 72 73 74 75 75 75 75 75 75 75	Benzene				15	19	4.4		7.6	3.2			1.3			
Contenterance																
New Procedure Color Colo				3.3	0.0	0.4	4.0									
December									6.2	2.6		1	1.2			
Debtorophysionenshare - < < < < < < < < <				65	0.7	10	3.6		0.3	3.0		1	1.2			
Methylene Chicagos 5					1.5	1.9	1.8				4.3	2.6	2.8			
International contents	Methylene Chloride	5		2						12						
Tellement 1,000 450 13 16 25	Naphthalene		<5.0												NS	NS
Tribothoroscheme	Tetrachloroethene											3.1	2.8			
Virging Chroinede 2																
Sylenes (Flotal)					14	18	2.3		- 1	1.1	1	4.1	4.3			
Separate Process Pro					2.8	3 3	2.2		- '							
1.00-bitrocrethane									18	5.2	1 4	21	6.2			
							0.1			0.2			0.2			
Activition of the property Activition Activition of the property Activition Activition of the property Activition of the							1.7		4.5							
1.1-Dichlorosethane	Methyl-tert-butyl ether (MTBE)	-	<1.0		3.6	3.3	5.1		26	3.1		1.1				
								31, 2007								
Elementary	1,1-Dichloroethane				12.3	12.8	17.8					11.1	39.8			
Dictional Confidence - < < 5.0	1,4-Dichlorobenzene															
Methylencolhoride	Benzene							7.3	7.7		F 1			8.3		
13-12-Dehloroethene									1		5.4	42.0	25			
Diethyle Ether	ì							15.1	16.6	9.8				16.3		
Methyl-tehtyl ether (MTBE)					12.2	11.8	17.3									
Li-Dichioroethane												27.0				
							April 4,	2008								
1.1-Dichloroethene	1,1-Dichloroethane	-	<5.00	NS	NS	NS	NS	0.727 J	NS	NS	NS	NS	NS	0.740 J	NS	NS
1.1-Dichloroethene								13, 2009								
						16.5						18.6				
					1.38 J						2.29 J		9.94			
Senzene	•				11.6	6.97			8.64			5.31				
Chloroberzene										1.40.1			2 57 .1			
Chloroethane										1.400			2.07 0			
Methylene Chloride	Chloroethane															
International continues	Dichlorodifluoromethane	-	<5.00			1.26 J						10.3	5.32	NS	NS	NS
Trichlororethene	Methylene Chloride						8.85 J			9.92 J						
Tirchicorfourmethane	Tetrachloroethene															
Virtual Chloride						13.5						8.62				
No. No.						2 22 1					3.26 J		1.58			
Section Sect												2 Q1 I				
Sepropylbenzene (Cumene)							5 42		15.8	5.43	4 08 J		13			
Methyl-tert-butyl ether (MTBE) -										0.10	1.000					
1,1-Dichloroethane	Methyl-tert-butyl ether (MTBE)	-								3.72 J						
1,1-Dichloroethane	1,2,4-Trimethylbenzene	-	<5.00		1.14 J									NS	NS	NS
1,1-Dichloroethene																
1,2-Dichlorobenzene 600 <5.00 2.24 J 2.96 J NS	1,1-Dichloroethane					14.3			2.64 J	3.72 J	7.08	15.7				
1,2-Dichloroethane											2.23 J	0.924 J	7.22			
1,3-Dichlorobenzene					2.24 J	1 26 1	∠.96 J		1							
1,4-Dichlorobenzene 75						1.20 J	0.43.1		1							
Senzene Senz	1.4-Dichlorobenzene				17.5	10.7			12	2.32 J		8 28	2.16 J			
Second S	Benzene															
Chlorobenzene 100 <5.00 5.51 4.44 J 7.11 NS 4.07 J 1.93 J 5.07 NS NS NS NS NS NS NS N	Bromodichloromethane						2.19 J									
Dichlorodifluoromethane	Chlorobenzene	100			5.51							5.07		NS		NS
Stylenge Total T	Chloroethane								5.81	1.09 J						
Methylene Chloride	Dichlorodifluoromethane				8.4		0.63 J				6.45	7.35	4.27 J			
Naphthalene					440		4.00 !		1.00 1	0.44	1 02 1	74.0	64.0			
Tetrachloroethene					119	26.6			1.22 J	9.41 J	1.U3 J	74.3	64.9			
Toluene					5 94	19.8	5.01		1	0.973 1	1.75 J	7 45	4 70			
Trickoloroethene					0.34		1.22 .I		1	0.0100	1.700	7.43	7.79			
Trichlorofluormethane	Tricholoroethene				10.7				0.646 J	0.937 J	2.45 J	7.93	6			
Vinyl Chloride 2 <5.00 2.01 J 2.18 J NS 1.55 J 1.36 J NS	Trichlorofluormethane															
Kylenes (Total) 10,000 <10.0 18.3 15.3 5.17 J NS	Vinyl Chloride				2.01 J	2.18 J			1.55 J							
sopropylbenzene (Cumene) - <5.00 5.97 5.97 5.53 NS 6.59 5.17 NS NS NS Methyl-tert-butyl ether (MTBE) - <5.00	Xylenes (Total)	10,000						NS				11.5				NS
Methyl-tert-butyl ether (MTBE) - <5.00 4.86 J 6.64 5.57 NS 16 7.41 NS NS NS 1,2,4-Trimethylbenzene - <5.00	cis-1,2-Dichloroethene	70								7.36	4.18 J		13.9			
1,2,4-Trimethylbenzene - <5.00 4.54 J NS NS NS NS	Isopropylbenzene (Cumene)											5.17				
	, , , , ,				4.86 J		5.57		16	7.41						
	1,2,4-Trimethylbenzene Notes:		<5.00			4.54 J]	NS	l			l	l	NS	NS	NS

Notes:

NOtes:

Mg/L = micrograms per liter

MGL = Maximum Contaminant Level

pql = practical quantitation limit

J = Estimated Value

Shaded concentrations exceed their MCL for drinking water limit at the time of sampling.

NS - Not Sampled - TMW-11 has not been located since April 4, 2008. TMW-12 was dry or had insufficient volume

TABLE D VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L) NEWBERRY COUNTY CLASS THREE MSW LANDFILL

Constituent	MCL	wal		MW-2RR		MW-4R		MW-6	LANDFIL MW-7R	MW-8	TANAL O	TRAVAL 40	TRANS/ 44	TMM 40	TMW-13
Constituent	MCL	pql	WW-1R	MW-2RR		June 21-2		IVIVV-6	WW-/R	WIVV-8	I MVV-9	TIVIVV-1U	I MVV-11	T IVIVV-12	TIVIVV-13
1,1-Dichloroethane	T -	<5		25.2	9.6	22.3		1.12 J	I	5.16 J	18.4	18.4	NS	NS	T T
1,1-Dichloroethene	7	<5				2.83 J							NS	NS	
1,2-Dichloroethane	5	<5		2.43 J	1.85 J						1.15 J	1.15 J	NS	NS	
1,3-Dichlorobenzene	-	<5											NS	NS	
1,4-Dichlorobenzene 2-Hexanone	75	<5 <5		16.5	10.6	4.49 J		9.18			9.01	9.01	NS NS	NS NS	6.27
2-nexanone Acetone	<u> </u>	<25						2.52 J					NS NS	NS NS	0.27
Benzene	5	<5		8.05	15.8	2.69 J		4.93 J			4.41 J	4.41 J	NS	NS	
Carbon Disulfide	-	<5		13.2						1.23 J			NS	NS	1.02 J
Chlorobenzene	100	<5		3.91	3.44 J	6.11		2.94 J			4.49 J	4.49 J	NS	NS	
Chloroethane	-	<5						7.51					NS	NS	
Dichlorodifluoromethane	700	<5 <5		12.1				0.152 J		10.8	12.8	12.8	NS NS	NS NS	
Ethylbenzene Methylene Chloride	5	<10		120	20.5	1.94 J		0.152 J	1.24 J		102	102	NS NS	NS NS	
Tetrachloroethene	5	<5		120	4.93 J	1.54 0			1.24 0		6.35	6.35	NS	NS	
Toluene	1,000		0.927 J	6	1.34 J	2.18 J	0.998 J	1.12 J	0.924 J	1.01 J	1.04 J	1.04 J	NS	NS	0.889 J
Tricholoroethene	5	<5		8.97	1.36 J			0.781 J			8.53	8.53	NS	NS	
Trichlorofluormethane	-	<5								5.17			NS	NS	
Vinyl Chloride	2	<5		44.0	4.00.1			1.61 J			0.55.1	0.55.1	NS	NS	
Xylenes (Total) cis-1,2-Dichloroethene	10,000 70	<10 <5		11.2 61.9	4.36 J 129	4.8 J		0.579 J 11.7	2.02 J	2.95 J	3.55 J 38.7	3.55 J 38.7	NS NS	NS NS	
cis-1,2-Dictiloroethene	70	<u></u>		01.9		ecember	1-2. 2010	11.7	2.02 J	2.90 J	30.1	30.1	NO	INO	
1,1-Dichloroethane	Ι -	<5.0		23	14	23		I	I	7.6	20	70	NS	NS	T T
1,1-Dichloroethene	7	<5.0										10	NS	NS	
1,4-Dichlorobenzene	75	<5.0		17	9.1			7.7			6.1		NS	NS	
Benzene	5	<5.0		9	14	0.0	-	6.7			5.1		NS	NS	<u> </u>
Chlorobenzene	100	<5.0 <10		12		6.3				10	14		NS NS	NS NS	
Dichlorodifluoromethane Methylene Chloride	5	<5.0		75	29				6.1	13	91	79	NS NS	NS NS	
Tetrachloroethene	5	<5.0		7.5	16				0.1		6.4	6.2	NS	NS	
Tricholoroethene	5	<5.0		9.8	11						9.7	9.6	NS	NS	
Trichlorofluormethane	-	<5.0								6.2			NS	NS	
Vinyl Chloride	2	<2.0		6.3	3			2.9			2.4		NS	NS	
Xylenes (Total)	10,000	<5.0		11	110	0.0		45	11		20	40	NS NS	NS NS	
cis-1,2-Dichloroethene	70	<5.0		61	110 F	6.2 ebruary 6	-7. 2012	15	111		39	18	NO	NO	
1,1-Dichloroethane	I -	<5		15.1	10.7	10.6	1.86 J	1.4 J	3.1 J	8.7	13.4	48.1	NS	NS	
							1.00 3	1.43	5.15						
1,1-Dichloroethene	7	<5		0.585 J		0.913 J	1.00 3	1.40	3.13	2.67 J	0.537 J	4.94 J	NS	NS	
1,2-Dichlorobenzene	600	<5		0.585 J 0.472 J	0.286 J		1.00 0	1.43	0.10				NS NS	NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane	600	<5 <5		0.585 J 0.472 J 2.15 J		0.913 J	1.00 3	1.4 0	3.10		0.537 J		NS NS NS	NS NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene	600	<5 <5 <5		0.585 J 0.472 J	0.286 J 0.884 J	0.913 J 2.16 J	1.00 3			2.67 J	0.537 J 0.399 J		NS NS NS	NS NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene	600	<5 <5		0.585 J 0.472 J 2.15 J	0.286 J	0.913 J	1.00 0	8.82 1.42 J	2.97 J 0.909 J		0.537 J		NS NS NS	NS NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene	600 5 - 75 - 5	<5 <5 <5 <5		0.585 J 0.472 J 2.15 J	0.286 J 0.884 J 7.45	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J	1.00 3	8.82	2.97 J 0.909 J 0.969 J	2.67 J 0.993 J 0.873 J	0.537 J 0.399 J 7.23		NS NS NS NS	NS NS NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene	600 5 - 75	<5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J	0.286 J 0.884 J 7.45 11.1 1.65 J	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J	1.00 3	8.82 1.42 J 7.41 3.21 J	2.97 J 0.909 J 0.969 J 0.275 J	2.67 J 0.993 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J	4.94 J 2.89 J	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene	600 5 - 75 - 5 100	<5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J	0.286 J 0.884 J 7.45	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J		8.82 1.42 J 7.41	2.97 J 0.909 J 0.969 J	0.993 J 0.873 J 0.539 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J	2.89 J	NS	NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane	600 5 - 75 - 5 100	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J	0.475 J	8.82 1.42 J 7.41 3.21 J	2.97 J 0.909 J 0.969 J 0.275 J	2.67 J 0.993 J 0.873 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J	4.94 J 2.89 J	NS	NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chloroethane Dichlorodifluoromethane Ethylbenzene	600 5 - 75 - 5 100 - 700	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J	0.286 J 0.884 J 7.45 11.1 1.65 J	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J		8.82 1.42 J 7.41 3.21 J 3.51 J	2.97 J 0.909 J 0.969 J 0.275 J	0.993 J 0.873 J 0.539 J 8.03	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78	2.89 J 1.08 J 6.28	NS	NS N	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane	600 5 - 75 - 5 100	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J		8.82 1.42 J 7.41 3.21 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J	0.993 J 0.873 J 0.539 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J	2.89 J	NS	NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chloroethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene	600 5 - 75 - 5 100 - - 700 5 100 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J		8.82 1.42 J 7.41 3.21 J 3.51 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J	0.993 J 0.873 J 0.539 J 8.03	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78	2.89 J 1.08 J 6.28 53.7	NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chloroethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene	600 5 - 75 - 5 100 - - 700 5 100 5 1,000	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J		8.82 1.42 J 7.41 3.21 J 3.51 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97	0.993 J 0.873 J 0.539 J 8.03 3.57 J	7.23 3.35 J 3.52 J 0.588 J 6.78 51.7	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j	NS N	NS N	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chloroethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Tricholoroethene	600 5 - 75 - 5 100 - - 700 5 1,000 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J	0.475 J	8.82 1.42 J 7.41 3.21 J 3.51 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j	NS N	NS N	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichlorofluormethane Trichlorofluormethane	600 5 - 75 - 5 100 - 700 5 100 5 1,000 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J		8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97	0.993 J 0.873 J 0.539 J 8.03 3.57 J	7.23 3.35 J 3.52 J 0.588 J 6.78 4.14 J 5.27 0.877 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j	NS N	NS N	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorodifluoromethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichlorofluormethane Unyl Chloride	600 5 - 75 - 5 100 - - 700 5 1,000 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J	0.475 J	8.82 1.42 J 7.41 3.21 J 0.52 J 0.617 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92	NS N	NS N	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichlorofluormethane Trichlorofluormethane	600 5 - 75 - 5 100 - - - - - 5 100 5 100 5 100 5 100 5 - - - - - - - - - - - - -	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 2.04 J	0.475 J 0.512 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J	7.23 3.35 J 3.52 J 0.588 J 6.78 4.14 J 5.27 0.877 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j	NS N	NS N	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Eithylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene	600 5 - - 5 - 5 100 - - - - - - - - - - - - -	<5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 4.26 J 2.04 J	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9	NS N	NS N	
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene	600 5 - 75 5 100 - 700 5 1,000 5 1,000 5 - 1,000 70	<5 <5 <5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 10.8	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 2.04 J 4.26 J 2.04 J 4.83 J ugust 30- 10.5	0.475 J 0.512 J	8.82 1.42 J 7.41 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chloroethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethene	600 5 - 75 5 100 - - 700 5 1,000 5 1,000 70 - - - - - - - - - - - - -	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0642 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9	3.53 J 2.45 J 1.86 J 4.26 J 2.04 J 4.83 J ugust 30- 10.5 0.874 J	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene	600 5 75 5 100 700 5 1000 5 1,000 5 2 10,000 70	<5 <5 <5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 10.8	0.913 J 2.16 J 3.53 J 2.45 J 1.86 J 2.04 J 4.26 J 2.04 J 4.83 J ugust 30- 10.5	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chloroethane Dichlorodiffuoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichloroftuormethane Trichloroftuormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene	600 5 - 75 5 100 - - 700 5 1,000 5 1,000 70 - - - - - - - - - - - - -	<5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J	3.53 J 2.45 J 1.86 J 4.26 J 2.04 J 4.83 J ugust 30- 10.5 0.874 J	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene	600 5 	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0642 J 0.611 J 2.22 J 0.216 J 12.1	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J	3.53 J 2.45 J 1.86 J 4.26 J 2.04 J 4.83 J ugust 30- 10.5 0.874 J	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J	0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	600 5 	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0.621 J 2.22 J 0.516 J 12.1 1.18 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.916 J 0.916 J 0.92 J	4.83 J ugust 30- 10.5 0.874 J 2.76 J	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 1.42 J 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS	2.97 J 0.909 J 0.969 J 0.276 J 2.12 J 7.97 0.799 J 0.801 J 9.52	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9 43.7 4.38 J	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Dichloroethane	600 5 	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 U 16.4 J 16.4 J 17.4 J 18.5 J 19.6 J 19.	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 0.613 J 0.916 J 0.916 J	3.53 J 2.45 J 1.86 J 4.26 J 2.04 J 4.83 J ugust 30- 10.5 0.874 J 2.76 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS NS	2.97 J 0.909 J 0.969 J 0.276 J 2.12 J 7.97 0.799 J 0.801 J 9.52	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J	NS N	NS	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	600 5 - 75 5 100 - 700 5 1,000 5 1,000 70 - 2 10,000 70 - 7 600 5 5 5 100 - 100 5 100 5 100 5 100 100 100	<5 <5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <0 <5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0.621 J 2.22 J 0.516 J 12.1 1.18 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 10.8 0.613 J 0.916 J 0.916 J 1.9 J 1.	4.83 J ugust 30- 10.5 0.874 J 2.76 J	0.475 J 0.512 J 0.533 J 31, 2012	8.82 1.42 J 7.41 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS	2.97 J 0.909 J 0.969 J 0.276 J 2.12 J 7.97 0.799 J 0.801 J 9.52	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9 43.7 4.38 J	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Dichloroethane	600 5 	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 U 16.4 J 16.4 J 17.4 J 18.5 J 19.6 J 19.	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.916 J 0.916 J 0.92 J	4.83 J ugust 30- 10.5 0.874 J 2.76 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS NS	2.97 J 0.909 J 0.969 J 0.276 J 2.12 J 7.97 0.799 J 0.801 J 9.52	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J	NS N	NS	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chloroethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,4-Dichlorobenzene Chlorobenzene Dichlorodifluoromethane Chlorobenzene Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Ethylbenzene Ethylbenzene	600 5 	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 0.611 J 2.22 J 0.516 J 12.1 1.18 J 4.72 J 7.02	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.916 J 0.42 J 5.51 1.9 J 1.9 J 1.16 J	4.83 J ugust 30- 10.5 0.874 J 2.76 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS NS NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9 4.38 J 2.1 J 0.368 J 4.02 J	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene	600 5 	<5 <5 <5 <5 <5 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <5 <0 <5 <5 <0 <5 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0642 J 0.611 J 2.22 J 0.516 J 12.1 1.18 J 4.72 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.916 J 0.42 J 5.51 1.9 J 5.51	4.83 J ugust 30- 10.5 0.938 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J	8.82 1.42 J 7.41 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS NS NS NS NS NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72 44.9 3.49 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J 49.8 4.73 J	NS N	NS	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chloroethane Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene Tricholoroethene Tricholoroethene Tricholoroethene	600 5 75 5 100 700 5 1,000 5 1,000 70 7 600 7 600 7 5 5 1,000 5 5 1,000 7 7 600 5 5 1,000 5 1,000 5 1,000 5 1,000	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <td></td> <td>0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0.642 J 0.516 J 12.1 1.18 J 4.72 J 7.02</td> <td>0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.916 J 0.42 J 5.51 1.9 J 1.9 J 1.9 J 1.0 S 1.0 S 1</td> <td>4.83 J ugust 30- 10.5 0.874 J 2.46 J 2.04 J</td> <td>0.475 J 0.512 J 0.533 J 31, 2012 1.86 J 0.998 J 0.388 J</td> <td>8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS NS</td> <td>2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37</td> <td>2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J 2.61 J</td> <td>0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72</td> <td>2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J</td> <td>NS NS N</td> <td>NS NS N</td> <td>1.07 J</td>		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0.642 J 0.516 J 12.1 1.18 J 4.72 J 7.02	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.916 J 0.42 J 5.51 1.9 J 1.9 J 1.9 J 1.0 S 1.0 S 1	4.83 J ugust 30- 10.5 0.874 J 2.46 J 2.04 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J 0.998 J 0.388 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J 2.61 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 5.92 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene Tichloroethene Trichloroethene Trichloroethene Trichloroethene Trichlorofluormethane	600 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <5 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <0		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0.642 J 0.516 J 12.1 1.18 J 4.72 J 7.02 49.4 3.71 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.42 J 5.51 1.9 J 1.16 J 2.2 J 9.03 3.09 5.14	4.83 J ugust 30- 10.5 0.874 J 2.76 J 3.92 J 5.46	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J	8.82 1.42 J 1.42 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72 4.49 3.49 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J 49.8 4.73 J	NS N	NS N	1.07 J
1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Tricholoroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane	600 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <0 <5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0<		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0642 J 0.516 J 12.1 1.18 J 4.72 J 7.02 49.4 3.71 J 5.18 3.18 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.42 J 5.51 1.9 J 1.16 J 2.2 J 9.03 3.09 5.14 2.64 J	4.83 J ugust 30- 10.5 0.938 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J 0.998 J 0.388 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J 2.61 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72 4.33 J 4.33 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J 49.8 4.73 J 6.31	NS N	NS	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Chlorobenzene Dichlorodifluoromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichlorobenzene Tichlorofluoromethane Ethylbenzene Methylene Chloride Tetrachloroethene Trichlorofluormethane Trichlorofluormethane Trichlorofluormethane Trichlorofluormethane Vinyl Chloride Xylenes (Total)	600 5 - - 75 5 100 - - 700 5 1,000 5 1,000 70 - - 7 600 5 5 75 - - - - - - - - - - - - -	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <5 <0 <5 <5 <0 <5 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <0 <5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0<		0.585 J 0.472 J 2.15 J 13 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0642 J 0.611 J 1.18 J 4.72 J 7.02 49.4 3.71 J 5.18 3.18 J 7.27 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 4 10.8 0.613 J 0.916 J 0.42 J 5.51 1.16 J 2.22 J 7.43 3.09 5.14	4.83 J 4.83 J 2.76 J 2.04 J 4.26 J 2.04 J 4.27 J 4.28 J 4.29 J 5.46 J 5.46 J 6.938 J 6.938 J 6.938 J 6.938 J 6.938 J 6.959 J	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J 0.998 J 0.388 J 0.651 J	8.82 1.42 J 7.41 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS	2.97 J 0.909 J 0.969 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37 2.29 J 4.81 J 0.642 J	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J 2.61 J 2.39 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72 44.9 3.49 J 4.33 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J 49.8 4.73 J 6.31	NS N	NS	1.07 J
1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Chlorobenzene Chlorobenzene Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Trichloroethene Trichlorofluormethane Vinyl Chloride Xylenes (Total) cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene Trichloroethene Tichloroethene Tichloroethene Trichlorofluormethane Trichlorofluormethane	600 5	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <5 <0 <0 <5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0<		0.585 J 0.472 J 2.15 J 13 5.04 4.87 J 0.855 J 7.42 54.3 3.1 J 5.06 0.413 2.77 J 6.94 J 45.5 15.3 0642 J 0.516 J 12.1 1.18 J 4.72 J 7.02 49.4 3.71 J 5.18 3.18 J	0.286 J 0.884 J 7.45 11.1 1.65 J 5.06 0.629 J 17.5 14.1 2.33 J 7.43 1.9 J 5.41 J 90.9 A 10.8 0.613 J 0.42 J 5.51 1.9 J 1.16 J 2.2 J 9.03 3.09 5.14 2.64 J	4.83 J ugust 30- 10.5 0.874 J 2.76 J 3.92 J 5.46	0.475 J 0.512 J 0.533 J 31, 2012 1.86 J 0.998 J 0.388 J	8.82 1.42 J 7.41 3.21 J 3.51 J 0.52 J 0.617 J 1.98 J 0.966 J 12.2 NS	2.97 J 0.909 J 0.969 J 0.275 J 2.12 J 7.97 0.799 J 0.801 J 9.52 2.37	2.67 J 0.993 J 0.873 J 0.539 J 8.03 3.57 J 1.54 J 2.82 J 3.95 J 7.63 7.6 2.05 J 1.16 J 0.599 J 5.56 4.59 J 1.86 J 2.61 J	0.537 J 0.399 J 7.23 3.35 J 3.52 J 0.588 J 6.78 51.7 4.14 J 5.27 0.877 J 1.77 J 2.77 J 30.5 11.7 0.415 J 0.626 J 0.434 J 6.31 3.04 J 5.72 4.33 J 4.33 J	2.89 J 1.08 J 6.28 53.7 0.067 J 4.94 j 1.85 J 1.71 J 18.9 43.7 4.38 J 0.368 J 4.02 J 49.8 4.73 J 6.31	NS N	NS	1.07 J

Notes:

μg/L = micrograms per liter MCL = Maximum Contaminant Level

pql = practical quantitation limit J = Estimated Value

Shaded concentrations exceed their MCL for drinking water limit at the time of sampling.

NS - Not Sampled - TMW-11 has not been located since April 4, 2008. TMW-12 was dry or had insufficient volume

TABLE D
VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L)
NEWBERRY COUNTY CLASS THREE MSW LANDFILL

Constituent	MCL	pgl	MW-1R	VBERRY		MW-4R	MW-5	MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-13
Constituent	MCL	pqı	IVIVV-IIK	WW-ZKK		February 2		INIVV-O	IVIVV-/IX	IVIVV-O	I IVIVV-9	TIVIVV-10	I IVIVV-I I	I IVIVV-12	T IVIVV-13
1,1-Dichloroethane	-	<5.00		16.8	NS	4.69 J	1.55 J	NS	2.3 J	8.49	12.4	3.47 J	NS	NS	1.24 J
1,1-Dichloroethene	7	<5.00		0.815 J	NS	0.867 J		NS		2.79 J	0.549 J	0.445 J	NS	NS	
1,2-Dichlorobenzene	600	<5.00		0.625 J	NS	0.502 J		NS	0.205 J		0.33 J		NS	NS	
1,2-Dichloroethane	5	<5.00		2.26 J	NS			NS					NS	NS	
1,4-Dichlorobenzene	75	<5.00		14.2	NS	1.12 J		NS	2.21 J	0.66 J	5.57	0.444 J	NS	NS	
Acetone	-	<5.00		2.68 J	NS	1.55 J		NS	3.96 J			1.32 J	NS	NS	
Benzene	5	<5.00		5.15	NS	1.75 J		NS	0.687 J	0.62 J	2.75 J	0.245 J	NS	NS	
Chlorobenzene	100	<5.00		6.15	NS	0.801 J	0.500.1	NS		0.325 J	2.65 J	0.745	NS	NS	
Dichlorodifluoromethane	- 5	<5.00 <5.00		14.2 54.1	NS NS		0.522 J	NS	0.385 J	13.2 3.53 J	9.31 40.9	0.745 J 3.56 J	NS	NS NS	
Methylene Chloride Tetrachloroethene	5	<5.00	+	3.88 J	NS			NS NS	0.365 J	1.59 J	3.46 J	0.688 J	NS NS	NS NS	
Toluene	1,000	<5.00		3.00 J	NS	1.67 J		NS	0.7653	1.09 J	3.40 J	0.000 J	NS	NS	
Tricholoroethene	5	<5.00		6.12	NS	1.07 0		NS	0.74 J	2.72 J	4.6 J	0.69 J	NS	NS	
Trichlorofluormethane	-	<5.00		0.524 J	NS		0.305 J	NS	0.740	3.89 J	0.723 J	0.00 0	NS	NS	
Vinyl Chloride	2	<5.00		3.56 J	NS		0.0000	NS		0.000	2.04 J		NS	NS	
Xylenes (Total)	10,000	<15.0		9.09 J	NS			NS			2.03 J		NS	NS	
cis-1,2-Dichloroethene	70	<5.00		48.7	NS	1.97 J	0.486 J	NS	6.51	5.82	25.4	2.07 J	NS	NS	
	-				Α	ugust 29-	30, 2013								
1,1-Dichloroethane	-	<1.0		16.7	NS	8.1	1.1	NS		10.5	13.5	42.9	NS	NS	
1,1-Dichloroethene	7	<1.0			NS			NS		3.5		5.9	NS	NS	
1,2-Dichlorobenzene	600	<1.0			NS	2.1		NS				<u> </u>	NS	NS	<u> </u>
1,2-Dichloroethane	5	<1.0		2.3	NS			NS					NS	NS	1
1,4-Dichlorobenzene	75	<1.0		17.6	NS	3.6		NS		1.2	8.9	2.4	NS	NS	
Benzene	5	<1.0	ļ .	5.3	NS	1.2		NS	-	1.3	3.4	2.7	NS	NS	
Chlorobenzene	100	<1.0	ļ .	6.8	NS	4.2		NS	-		4.2	1.0	NS	NS	1
Chloroethane	-	<1.0 <1.0		1.2	NS	1		NS		0.6	6.8	1.2	NS	NS	
Dichlorodifluoromethane Methylene Chloride	5	<1.0 <2.0		7.7 36.2	NS NS	 		NS NS	-	9.6 7.4	6.8 40.8	5.2 44	NS NS	NS NS	-
Methylene Chloride Naphthalene	-	<2.0 <1.0		1.9	NS NS	1		NS NS		1.4	40.8	44	NS NS	NS NS	1
Tetrachloroethene	5	<1.0		3.5	NS	 		NS	—	2.4	4.1	4.6	NS NS	NS NS	
Tricholoroethene	5	<1.0		5.6	NS			NS		3.9	5.4	5.8	NS	NS	
Trichlorofluormethane	-	<1.0		0.0	NS			NS		4.4	1.3	1.7	NS	NS	
Vinyl Chloride	2	<1.0		4.8	NS			NS			2.1		NS	NS	
Xylenes (Total)	10,000	<2.0		7.9	NS			NS					NS	NS	
cis-1,2-Dichloroethene	70	<5		45.3	NS	3.5		NS	1.5	9.3	30.2	20.6	NS	NS	
					F	ebruary 4	-5, 2014								
1,1-Dichloroethane	-	<1.0		17	NS	8.6		NS		11	11	42	NS	NS	
1,1-Dichloroethene	7	<2.0			NS			NS		4		5.5	NS	NS	
1,2-Dichlorobenzene	600	<1.0			NS	2		NS					NS	NS	
1,2-Dichloroethane	5	<1.0		2.4	NS			NS					NS	NS	
1,4-Dichlorobenzene	75	<1.0		15	NS	3.1		NS	1.4	4.0	5.1	2.5	NS	NS	
Benzene	5	<1.0		5.3	NS	1.4		NS	1.2	1.2	2.4	2.8	NS	NS	
Chlorobenzene Dichlorodifluoromethane	100	<1.0 <1.0		5.9 6	NS NS	3.3		NS NS		11	2.4 5.8	5.7	NS NS	NS NS	
Hexachlorobutadiene	-	<1.0	+	0	NS			NS		- 11	2.4	5.7	NS NS	NS NS	
Methylene Chloride	5	<5.0		29	NS			NS		11	5.3	43	NS	NS	
Tetrachloroethene	5	<1.0		3.2	NS			NS		2.5	2.8	4.9	NS	NS	
Tricholoroethene	5	<1.0		5.2	NS			NS		4.3	4	6.2	NS	NS	
Trichlorofluormethane	-	<1.0			NS			NS		3.2		1.2	NS	NS	
Vinyl Chloride	2	<1.0		5.7	NS			NS			1.9		NS	NS	
Xylenes (Total)	10,000	<1.0		5.8	NS			NS			2	2	NS	NS	
cis-1,2-Dichloroethene	70	<1.0		45	NS	3.9		NS	4.4	10		23	NS	NS	
trans-1,2-Dichloroethene	100	<2.0			NS			NS			23		NS	NS	
						ovember:	3-5, 2014								
1,1-Dichloroethane	-	<1.0		18.2	7.3	9.5				14	15.6	40.6	NS	NS	ļ
1,1-Dichloroethene	7	<1.0		0.0		1.2				6		5.5	NS	NS	
				2.6			i		1		0.5	3.3	NS NS	NS NS	1
1,2-Dichloroethane	5	<1.0	-		7	1.4			_	4 ^					1
Benzene	5	<1.0	,	5.8	7.5	1.4		4	2	1.3	3.5	3.3			
Benzene Chloroethane	5 -	<1.0 <1.0	,	5.8	7.5 2.1	1.4 1.4		4 2.6	2				NS	NS	
Benzene Chloroethane Dichlorodifluoromethane	5 - -	<1.0 <1.0 <1.0	,	5.8 7.8					2	12.5	6.9	7	NS NS	NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride	5 - - 5	<1.0 <1.0 <1.0 <2.0	`	7.8 29.3	2.1				2	12.5 17.4	6.9 42	7 45.8	NS NS NS	NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene	5 - - 5 5	<1.0 <1.0 <1.0 <2.0 <1.0	`	7.8 29.3 2.9	7.3				2	12.5 17.4 2.6	6.9 42 3.2	7 45.8 5.7	NS NS NS	NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene	5 - - 5	<1.0 <1.0 <1.0 <2.0	`	7.8 29.3 2.9 5	2.1			2.6	2	12.5 17.4	6.9 42 3.2 5.3	7 45.8	NS NS NS NS	NS NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene	5 - - 5 5 5	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0	`	7.8 29.3 2.9	7.3 3	1.4			6	12.5 17.4 2.6	6.9 42 3.2	7 45.8 5.7	NS NS NS	NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride	5 - - 5 5 5 2	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0	`	7.8 29.3 2.9 5 6.7	7.3 3 2.8 83.3	1.4	-4, 2015	1.9		12.5 17.4 2.6 4.8	6.9 42 3.2 5.3 2.8	7 45.8 5.7 7.8	NS NS NS NS NS	NS NS NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride	5 - - 5 5 5 2	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7	7.3 3 2.8 83.3	1.4	-4, 2015	1.9		12.5 17.4 2.6 4.8	6.9 42 3.2 5.3 2.8	7 45.8 5.7 7.8	NS NS NS NS NS	NS NS NS NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethene	5 - - 5 5 5 2 70	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7 50.3	7.3 3 2.8 83.3	1.4 1.1 4.2 February 3	-4, 2015	1.9 7.9		12.5 17.4 2.6 4.8	6.9 42 3.2 5.3 2.8 34.7	7 45.8 5.7 7.8	NS NS NS NS NS NS NS NS NS	NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	5 - 5 5 5 2 70	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7 50.3	7.3 3 2.8 83.3 F	1.4 1.1 4.2 Eebruary 3 8.6 1.5	-4, 2015	1.9 7.9	6	12.5 17.4 2.6 4.8 12.5	6.9 42 3.2 5.3 2.8 34.7	7 45.8 5.7 7.8 34 36.9 5.1	NS	NS NS NS NS NS NS NS NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Benzene	5 - - 5 5 5 2 70	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7 50.3	7.3 3 2.8 83.3	1.4 1.1 4.2 ebruary 3 8.6 1.5	-4, 2015	1.9 7.9 1.1		12.5 17.4 2.6 4.8 12.5	6.9 42 3.2 5.3 2.8 34.7	7 45.8 5.7 7.8 34	NS	NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Chloroethane	5 - - 5 5 5 5 2 70	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1		7.8 29.3 2.9 5 6.7 50.3 16.4	7.3 3 2.8 83.3 F	1.4 1.1 4.2 Eebruary 3 8.6 1.5	-4, 2015	1.9 7.9	6	12.5 17.4 2.6 4.8 12.5	6.9 42 3.2 5.3 2.8 34.7 14.5	7 45.8 5.7 7.8 34 36.9 5.1	NS N	NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Bichloroethane Chloroethane	5 - - 5 5 5 5 2 70	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1		7.8 29.3 2.9 5 6.7 50.3 16.4 2.4 6	7.3 3 2.8 83.3 F 2.9	1.4 1.1 4.2 ebruary 3 8.6 1.5	-4, 2015	1.9 7.9 1.1	6	12.5 17.4 2.6 4.8 12.5 14 6	6.9 42 3.2 5.3 2.8 34.7 14.5 3.5	7 45.8 5.7 7.8 34 36.9 5.1 3	NS N	NS	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride	5 - - 5 5 5 5 2 70	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7 50.3 16.4 2.4 6	7.3 3 2.8 83.3 F 2.9	1.4 1.1 4.2 ebruary 3 8.6 1.5	-4, 2015	1.9 7.9 1.1	6	12.5 17.4 2.6 4.8 12.5 14 6	6.9 42 3.2 5.3 2.8 34.7 14.5 7.6 36.7	7 45.8 5.7 7.8 34 36.9 5.1 3 7.6	NS N	NS N	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene	5 - - 5 5 5 5 2 70 - - 7 5 5 5 2 70 - - - - - - - - - - - - - - - - - -	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7 50.3 16.4 2.4 6	2.1 7.3 3 2.8 83.3 F 2.9 2.8 2.7 2.3	1.4 1.1 4.2 ebruary 3 8.6 1.5	-4, 2015	1.9 7.9 1.1	6	12.5 17.4 2.6 4.8 12.5 14 6 1 13 18 3	6.9 42 3.2 5.3 2.8 34.7 14.5 3.5 7.6 36.7 3.2	7 45.8 5.7 7.8 34 36.9 5.1 3 3 3.6 38.6 5.2	NS N	NS N	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Dichlorodifluoromethane Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene	5 	<1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1		7.8 29.3 2.9 5 6.7 50.3 16.4 2.4 6	2.1 7.3 3 2.8 83.3 F 2.9 2.8 2.7 2.3 1	1.4 1.1 4.2 ebruary 3 8.6 1.5	-4, 2015	1.9 7.9 1.1	6	12.5 17.4 2.6 4.8 12.5 14 6	6.9 42 3.2 5.3 2.8 34.7 14.5 7.6 36.7 3.2 5.4	7 45.8 5.7 7.8 34 36.9 5.1 3 7.6	NS N	NS N	
Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene Tricholoroethene Vinyl Chloride cis-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane Benzene Chloroethane Dichlorodifluoromethane Methylene Chloride Tetrachloroethene	5 - - 5 5 5 5 2 70 - - 7 5 5 5 2 70 - - - - - - - - - - - - - - - - - -	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		7.8 29.3 2.9 5 6.7 50.3 16.4 2.4 6	2.1 7.3 3 2.8 83.3 F 2.9 2.8 2.7 2.3	1.4 1.1 4.2 ebruary 3 8.6 1.5	-4, 2015	1.9 7.9 1.1	6	12.5 17.4 2.6 4.8 12.5 14 6 1 13 18 3	6.9 42 3.2 5.3 2.8 34.7 14.5 3.5 7.6 36.7 3.2	7 45.8 5.7 7.8 34 36.9 5.1 3 3 3.6 38.6 5.2	NS N	NS N	

Notes:

µg/L = micrograms per liter
MCL = Maximum Contaminant Level
pql = practical quantitation limit
J = Estimated Value

Shaded concentrations exceed their MCL for drinking water limit at the time of sampling.

NS - Not Sampled - TMW-11 has not been located since April 4, 2008. TMW-12 was dry or had insufficient volume

TABLE D VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L)

1.1-Dechtoroethane		
11-Dichiorosethene	onstituent	MCL po
1.1.Dicknoreshmen	1.0:11	1
1.2Delibrocethane		
Bentzene		
Chloropethane		
Methylene Chloride		- <1
Tertachlorosthene		
Tincholoroethene		
Virty Christore		
Cont-12-Dichloroethene		
Inf-Dichloroethane		
1.1-Dichloroethene	,	
1_2Dichioroethane		
Benzene		
Citioresthane		
Dishlorodifuoromethane - < 1.0 2.9		
Methylene Chloride		
Tetrachiorethene		
Vary Choirde		
Section Sect	richoloroethene	
In-Dichloroethane		
1-1-Dichloroethene	s-1,2-Dichloroethene	70 <1
1.1-Dichloroethene	1 Diobloroothana	1
12-Dichloroethane		
Benzene		
Chloroethane		
Dichtorodiffuoromethane		
Methylene Chloride		
Tricholoroethene	ethylene Chloride	5 <2
Vinyl Chloride		
Cis-1,2-Dichloroethene 70		
March 24, 2017		
1,1-Dichloroethane	s-1,2-Dichioroethene	70 <1.
Elemzene 5 5.0 5.5	1 Dichloroothana	5.
Dichlorodifluoromethane -		
Methylene Chloride		
Tricholoroethene		
Vinyl Chloride 2 2.0 7.8	etrachloroethene	5 5.
Cis-1,2-Dichloroethene 70 5.0 28		
November 6, 2017 1,1-Dichloroethane -		
1,1-Dichloroethane	s-1,2-Dichloroethene	70 5.
Benzene 5 5.0 5.8	1 Dieblereethene	T = 1
Dichlorodifluoromethane		
Methylene Chloride		
Vinyl Chloride 2 2.0 14 10 2.9 3 NS cis-1,2-Dichloroethene 70 5.0 23 9.7 18 25 36 NS March 19, 2018 1,1-Dichloroethane - 5.0 12 15 9.5 17 NS Benzene 5 5.0 6.3 NS NS NS Dichlorodifluoromethane - 5.0 NS NS Methylene Chloride 5 5.0 NS NS Tricholoroethene 5 5.0 NS		
cis-1,2-Dichloroethene 70 5.0 23 9.7 18 25 36 NS March 19, 2018 1,1-Dichloroethane - 5.0 12 15 9.5 17 NS Benzene 5 5.0 8.3 9.4 5.2 NS Dichlorodifluoromethane - 5.0 9.4 5.2 NS Methylene Chloride 5 5.0 24 15 22 NS Tricholoroethene 5 5.0 5.9 5.6 NS Vinyl Chloride 2 2.0 16* 6.3 2.4 2.8 NS cis-1,2-Dichloroethene 70 5.0 21 8.4 19 23 32 NS September 21, 2018 1,1-Dichloroethene - 5.0 9.8 5.3 16 9.7 17 NS Benzene 5 5.0 5.9 NS NS NS	richoloroethene	5 5.
March 19, 2018 15 9.5 17 NS		
1,1-Dichloroethane	s-1,2-Dichloroethene	70 5.
Benzene 5 5.0 6.3	1 Dichloroethans	F .
Dichlorodifluoromethane		
Methylene Chloride 5 5.0 24 15 22 NS Tricholoroethene 5 5.0 5.9 5.6 NS Vinyl Chloride 2 2.0 16* 6.3 2.4 2.8 NS vinyl Chloride 70 5.0 21 8.4 19 23 32 NS September 21, 2018 1,1-Dichloroethane - 5.0 9.8 5.3 16 9.7 17 NS Benzene 5 5.0 5.9 8 NS		
Tricholoroethene		
Vinyl Chloride 2 2.0 16* 6.3 2.4 2.8 NS cis-1,2-Dichloroethene 70 5.0 21 8.4 19 23 32 NS September 21, 2018 1,1-Dichloroethane - 5.0 9.8 5.3 16 9.7 17 NS Benzene 5 5.0 5.9 NS NS NS NS Cis-1,2-Dichloroethene 70 5.0 8.9 26 20 22 34 NS Dichlorodifluoromethane - 5.0 NS NS Methylene Chloride 5 5.0 NS Yinyl Chloride 5 5.0 NS 6.1 5.4 NS Vinyl Chloride 2 2.0 24 13 3.8 3.2 NS NS		
September 21, 2018 1,1-Dichloroethane -		
1,1-Dichloroethane - 5.0 9.8 5.3 16 9.7 17 NS Benzene 5 5.0 5.9 NS NS <td< td=""><td>s-1,2-Dichloroethene</td><td>70 5.</td></td<>	s-1,2-Dichloroethene	70 5.
Benzene 5 5.0 5.9 NS cis-1,2-Dichloroethene 70 5.0 8.9 26 20 22 34 NS Dichlorodifluoromethane - 5.0 9.6 5 NS Methylene Chloride 5 5.0 29 14 24 NS Tricholoroethene 5 5.0 6.1 5.4 NS Vinyl Chloride 2 2.0 24 13 3.8 3.2 NS	15:11 "	
cis-1,2-Dichloroethene 70 5.0 8.9 26 20 22 34 NS Dichlorodifluoromethane - 5.0 9.6 5 NS Methylene Chloride 5 5.0 29 14 24 NS Tricholoroethene 5 5.0 6.1 5.4 NS Vinyl Chloride 2 2.0 24 13 3.8 3.2 NS		
Dichlorodifluoromethane - 5.0 9.6 5 NS Methylene Chloride 5 5.0 29 14 24 NS Tricholoroethene 5 5.0 6.1 5.4 NS Vinyl Chloride 2 2.0 24 13 3.8 3.2 NS		
Methylene Chloride 5 5.0 29 14 24 NS Tricholoroethene 5 5.0 6.1 5.4 NS Vinyl Chloride 2 2.0 24 13 3.8 3.2 NS		
Tricholoroethene 5 5.0 6.1 5.4 NS Vinyl Chloride 2 2.0 24 13 3.8 3.2 NS		
Vinyl Chloride 2 2.0 24 13 3.8 3.9 NS		
March 8, 2019		
Benzene 5 5.0 5.6 NS		
Dichlorodifluoromethane - 5.0 NS 1,1-Dichloroethane - 5.0 7.4 9.9 9.0 15 NS		
1,1-Dichloroethane - 5.0 7.4 9.9 9.0 15 NS cis-1,2-Dichloroethene 70 5.0 6.5 8.5 22 29 NS		
Use 1,2-Distribute 1 0 3.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0		
Tricholoroethene		
Vinyl Chloride 2 2.0 24 4.6 3.3 3.3 NS		

Notes:

µg/L = micrograms per liter

MCL = Maximum Contaminant Level
pql = practical quantitation limit

Shaded concentrations exceed their MCL for drinking water limit at the time of sampling.

NS - Not Sampled - TMW-11 has not been located since April 4, 2008. TMW-12 and TMW-13 were recorded as dry or had insufficient volume

TABLE D VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L)

			NEV	VBEKKI	COUN	II CLAS	O INKE	E MSW	LANDFIL	.L					
Constituent	MCL	pql	MW-1R	MW-2RR				MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-13
	_		, ,			eptember	26, 2019		T		T	1	1	1	1
Benzene	5	1		5.5	2.2	1.1				2.2	2.3	2.8		NS	NS
Chlorobenzene	100	1		6.3		6.2				1.0	4.0			NS	NS
Chloroethane 1,2-Dichlorobenzene	-	1				1.5 1.5								NS NS	NS NS
1,4-Dichlorobenzene	-	1		20.2	8.5	3.6		1.5		2.4	10.2	3.9		NS	NS
1,1-Dichloroethane	-	1		7.8	2.6	4.2	2.1			15.2	8	15		NS	NS
1,2-Dichloroethane	7	1		1.5										NS	NS
1,1-Dichloroethene	5	1								3.4		1.6		NS	NS
cis-1,2-Dichloroethene	70	1		2.2	17.4		3.2		1.1	20.8	22.2	37.2		NS	NS
Methylene Chloride	5	5			4.0					30.1	11.2	22.6		NS	NS
Tetrachloroethene Toluene	5 100	1		1.1	1.2					2.5	1.3	3.5		NS NS	NS NS
Tricholoroethene	5	1		1.1	1.7					5.2	1.9	4.7		NS	NS
Trichlorofluoromethane	-	1								3.1	1.0	1.3		NS	NS
Vinyl Chloride	2	1		21.9	9.6	3.1					2.9			NS	NS
o-Xylene	10,000	1			1.1									NS	NS
						March 19	, 2020								
Benzene	5	1		6.0	NS					2.1	2.2	2.5		NS	
Chlorobenzene	100	1		6.6	NS	2.0					3.8			NS	
1,4-Dichlorobenzene	-	1		22.3	NS	1.7	4.0			1.9	9.7	3.1		NS	4.
1,1-Dichloroethane	7	1		6.1 1.2	NS NS	4.9	1.8			14.9	6.9	14.7		NS NS	1.1
1,2-Dichloroethane 1,1-Dichloroethene	5	1		1.2	NS NS	 				3.4		1.7		NS NS	1
cis-1,2-Dichloroethene	70	1		1.4	NS	1.3	3.0			22.2	19.9	30.5		NS	1
Methylene Chloride	5	5			NS					30.9	9.7	19.1		NS	
Tetrachloroethene	5	1			NS					2.5	1.2	2.9		NS	
Tricholoroethene	5	1			NS					5.5	1.7	4.0		NS	
Trichlorofluoromethane	-	1			NS					2.5				NS	
Vinyl Chloride	2	1		18.7	DRY	2.6		_			2.2			NS	
						tember 23	& 24, 202	:0	1						
Benzene	5	1		4.7	1.6	1.1				1.9	2.1	2.1		NS	NS
1,2-Dichlorobenzene 1,1-Dichloroethane	-	1		5.2	2.1	1.3 3.8	1.6			14.8	6.4	11.7		NS NS	NS NS
1,1-Dichloroethene	5	1		J.Z	2.1	3.0	1.0			3.1	0.4	1.3		NS	NS
cis-1,2-Dichloroethene	70	1			15.8		2.5			21.0	18.9	28.1		NS	NS
Methylene Chloride	5	5								31.7	7.5	16.4		NS	NS
Tetrachloroethene	5	1								2.2		2.3		NS	NS
Toluene	100	1		1.3										NS	NS
Tricholoroethene	5	1			1.3					5.0	1.4	3.4		NS	NS
Trichlorofluoromethane	-	1		45.4		2.2				2.3	2.5			NS	NS
Vinyl Chloride	2	1		15.4	6.6	2.2 arch 19 &	20 2021				2.5			NS	NS
Benzene	5	1	т т			aicii iə o	20, 2021								
1,2-Dichlorobenzene	3			11	22	11	I .	2.4		2.1	2.2	2.1		NS	NS
	-			4.1	2.2	1.1 1.2		2.4		2.1	2.2	2.1		NS NS	NS NS
1,1-Dichloroethane	-	1		4.1	2.2	1.1 1.2 4.6	1.3	2.4		2.1	2.2 6.7	2.1 12.5		NS NS NS	NS NS NS
	5	1			2.9	1.2	1.3			17 3.1	6.7	12.5 1.4		NS NS NS	NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene	70	1 1 1 1				1.2		2.4		17 3.1 23.0	6.7	12.5 1.4 27.6		NS NS NS	NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride	70 5	1 1 1 1 5			2.9	1.2	1.3			17 3.1 23.0 37.7	6.7	12.5 1.4 27.6 18.3		NS NS NS NS	NS NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene	70 5 5	1 1 1 1 5		4.5	2.9	1.2	1.3			17 3.1 23.0	6.7	12.5 1.4 27.6		NS NS NS NS NS	NS NS NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene	70 5 5 100	1 1 1 1 5 1			2.9	1.2	1.3			17 3.1 23.0 37.7 2.5	6.7 18.5 7.4	12.5 1.4 27.6 18.3 2.3		NS NS NS NS NS NS	NS NS NS NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Tricholoroethene	70 5 5	1 1 1 1 5 1 1		4.5	2.9	1.2	1.3			17 3.1 23.0 37.7 2.5	6.7	12.5 1.4 27.6 18.3		NS NS NS NS NS NS NS	NS NS NS NS NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene	70 5 5 100 5	1 1 1 1 5 1		4.5	2.9	1.2	1.3			17 3.1 23.0 37.7 2.5	6.7 18.5 7.4	12.5 1.4 27.6 18.3 2.3		NS NS NS NS NS NS	NS NS NS NS NS NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Tricholoroethene Tricholorofluoromethane	70 5 5 100 5	1 1 1 1 5 1 1 1		4.5	2.9 29.4 1.0	1.2	1.3			17 3.1 23.0 37.7 2.5	6.7 18.5 7.4	12.5 1.4 27.6 18.3 2.3		NS	NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene	70 5 5 100 5 - 2	1 1 1 1 5 1 1 1 1		4.5 1.5 13.1	2.9 29.4 1.0 10.7 S	1.2 4.6 2.7 eptember 1.4	1.3			17 3.1 23.0 37.7 2.5 5.5 2.3	6.7 18.5 7.4 1.4 2.7	12.5 1.4 27.6 18.3 2.3 3.1		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichlorofluoromethane Vinyl Chloride	70 5 5 100 5 - 2	1 1 1 1 5 1 1 1 1		4.5 1.5	2.9 29.4 1.0	1.2 4.6 2.7 eptember	1.3			17 3.1 23.0 37.7 2.5 5.5 2.3	6.7 18.5 7.4 1.4	12.5 1.4 27.6 18.3 2.3		NS NS NS NS NS NS NS NS NS NS	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Tricholoroethene Trichlorofluoromethane Vinyl Chloride Benzene Chlorobenzene Chloroethane	70 5 5 100 5 - 2	1 1 1 1 5 1 1 1 1 1 1 1 1		4.5 1.5 13.1	2.9 29.4 1.0 10.7 S	2.7 eptember 1.4 7.1 1.0	1.3			17 3.1 23.0 37.7 2.5 5.5 2.3	6.7 18.5 7.4 1.4 2.7	12.5 1.4 27.6 18.3 2.3 3.1		NS NS NS NS NS NS NS NS NS NS NS	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene Chlorobenzene Chlorobentane 1,2-Dichlorobenzene	70 5 5 100 5 - 2	1 1 1 1 5 5 1 1 1 1 1 1 1 1		1.5 1.5 13.1 5.1 7.7	2.9 29.4 1.0 10.7 S. 2.7 2.0	1.2 4.6 2.7 eptember 1.4 7.1 1.0 1.5	1.3			17 3.1 23.0 37.7 2.5 5.5 2.3	18.5 7.4 1.4 2.7	12.5 1.4 27.6 18.3 2.3 3.1		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene Chloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene	70 5 5 100 5 - 2 5 100 -	1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 13.1 5.1 7.7	2.9 29.4 1.0 10.7 \$.2.7 2.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	1.3 2.0 29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3	6.7 18.5 7.4 1.4 2.7 2.3 3.8	12.5 1.4 27.6 18.3 2.3 3.1		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Tricholoroethene Tricholoroethene Trichlorofluoromethane Vinyl Chloride Benzene Chloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane	70 5 5 100 5 - 2 2 5 100 - - - -	1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 1.5 13.1 5.1 7.7	2.9 29.4 1.0 10.7 S. 2.7 2.0	1.2 4.6 2.7 eptember 1.4 7.1 1.0 1.5	1.3			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0	18.5 7.4 1.4 2.7	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene Chloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene	70 5 5 100 5 - 2 5 100 -	1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 13.1 5.1 7.7	2.9 29.4 1.0 10.7 \$.2.7 2.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	1.3 2.0 29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3	6.7 18.5 7.4 1.4 2.7 2.3 3.8	12.5 1.4 27.6 18.3 2.3 3.1		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Tricholoroethene Tricholoroethene Trichlorofluoromethane Vinyl Chloride Benzene Chlorobenzene Chloroethane 1,2-Dichlorobenzene 1,4-Dichlorobennee 1,1-Dichloroethane 1,1-Dichloroethene	70 5 5 100 5 - 2 2 5 100 - - 2	1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 13.1 5.1 7.7	2.9 29.4 1.0 10.7 \$2.7 2.0 10 3.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0	6.7 18.5 7.4 1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Tricholoroethene Tricholoroethene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene Chloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene	70 5 5 100 5 - 2 2 5 100 - - - - - - - - - - - - - - - - - -	1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 13.1 5.1 7.7 25 5.1	2.9 29.4 1.0 10.7 \$2.7 2.0 10 3.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0	6.7 18.5 7.4 1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichlorofluoromethane Trichlorofluoromethane Vinyl Chloride Benzene Chlorobenzene Chloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethene dis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Toluene	70 5 5 100 5 	1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 13.1 5.1 7.7	2.9 29.4 1.0 10.7 \$2.7 2.0 10 3.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0 2.0 16 2.8 21 32 2.6	1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3 4.0 4.0 13 1.6 32 19 3.1		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Tricholoroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Chloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Methylene Chloride Tetrachloroethene Tricholoroethene Tricholoroethene	70 5 5 100 5 - 2 2 5 100 - - - - - 5 100 - - - - - - - - - - - - - - - - - -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5 13.1 5.1 7.7 25 5.1	2.9 29.4 1.0 10.7 \$2.7 2.0 10 3.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0 2.0 16 2.8 21 32 2.6	6.7 18.5 7.4 1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3 4.0 13 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethane Lipchloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene dethylene Chloride Tetrachloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene	70 5 5 100 5 - 2 2 5 100 - - - - 5 70 5 5 100 - - - - - - - - - - - - - - - - - -	1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.5 1.5 13.1 5.1 7.7 25 5.1 2.7	2.9 29.4 1.0 10.7 S 2.7 2.0 10 3.0 30	1.2 4.6 2.7 eptember 1.4 7.1 1.0 1.5 4.1 3.9	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0 2.0 16 2.8 21 32 2.6	6.7 18.5 7.4 1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3 4.0 4.0 13 1.6 32 19 3.1		NS N	NS N
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene Chloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene dis-1,2-Dichloroethene Ti-Dichloroethene Ti-Dichloroethene Ti-Dichloroethene Ti-Dichloroethene Ti-Dichloroethene Toluene Trichlorofluoromethane Trichlorofluoromethane Vinyl Chloride	70 5 100 5 	1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.5 1.5 13.1 5.1 7.7 25 5.1 2.7	2.9 29.4 1.0 10.7 \$2.7 2.0 10 3.0	2.7 eptember 1.4 7.1 1.0 1.5 4.1	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0 2.0 16 2.8 21 32 2.6 5.7	1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3 4.0 13 1.6 32 19 3.1		NS N	NS
1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane Vinyl Chloride Benzene Chlorobenzene Chloroethane 1,2-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene dest-1,2-Dichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene	70 5 5 100 5 - 2 2 5 100 - - - - 5 70 5 5 100 - - - - - - - - - - - - - - - - - -	1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.5 1.5 13.1 5.1 7.7 25 5.1 2.7	2.9 29.4 1.0 10.7 S 2.7 2.0 10 3.0 30	1.2 4.6 2.7 eptember 1.4 7.1 1.0 1.5 4.1 3.9	29, 2021			17 3.1 23.0 37.7 2.5 5.5 2.3 2.4 1.0 2.0 16 2.8 21 32 2.6	6.7 18.5 7.4 1.4 2.7 2.3 3.8 9.1 5.6	12.5 1.4 27.6 18.3 2.3 3.1 2.9 1.3 4.0 13 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		NS N	NS N

I__Z-Dipromo-3-cnoloropropane 0.2 0.02 0.17

Notes:
μg/L = micrograms per liter
MCL = Maximum Contaminant Level
pql = practical quantitation limit
J = Estimated Value

Shaded concentrations exceed their MCL for drinking water limit at the time of sampling.
NS -TMW -12 and TMW-13 were not sampled due to the well was dry or there was an insufficient volume of water
TMW -11 was located after the March 2019 sampling event.

TABLE D VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L)

			NEWBE												
Constituent	MCL	pql	MW-1R MW-2	2RR	MW-3			MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW
Benzene	5	1	3.9	a	1.5	arch 29 &	30, 2022	3.0		2.2	1.6	2.3	ı	NS	NS
Chlorobenzene	100	1	7.		1.6	4.9		6.2		1.1	3.5	1.3		NS	NS
Chloroethane	-	1						2.3						NS	NS
,2-Dichlorobenzene	-	1				1.2								NS	NS
,4-Dichlorobenzene	-	1	24.		9.9	3.7		3.7		2.3	8.6	4.1		NS	N:
,1-Dichloroethane	-	1	4.4	4	2.0	3.5	2.0			14.8	4.4	11.9		NS	N:
,1-Dichloroethene	5	1			112		2.0	2.0	ļ	2.8	10.0	1.5		NS	N:
is-1,2-Dichloroethene	70	1	-		14.3		3.0	3.9		24.5	12.0	30.8 13.7		NS NS	N N
Methylene Chloride Fetrachloroethene	5 5	5 1	-							32.8 2.5		2.6		NS	N
Toluene	100	1	2.	1						2.5		2.0		NS	N
Tricholoroethene	5	1								5.5		3.9		NS	N
richlorofluoromethane	-	1	1							2.3		1.1		NS	N
/inyl Chloride	2	1	14.	5	11.0	2.4					2.4			NS	N
	•		•			ecember 2	26, 2022								
Benzene	5	1	4.0		2.5			2.2		2.4	1.7	2.3		NS	N
Chlorobenzene	100	11	7.	5	1.0	3.1		4.3		1.4	3.7	1.4		NS	N
Chloroethane	-	1						1.7						NS	N
,4-Dichlorobenzene	-	1	21.		6.0	2.9	0.0	2.2		2.7	9.4	4.0		NS	N
,1-Dichloroethane	-	1	4.8	5	4.0	2.9	2.2		1	15.8	4.4	10.3	-	NS	١
,1-Dichloroethene	5 70	1	 		19.7		3.6	2.8	 	2.7 24.9	11.7	1.1 28.6	-	NS NS	N
is-1,2-Dichloroethene	5	5	 		19.7		3.0	2.0	 	24.9 33.7	11.7	28.6 13.8		NS NS	N
Methylene Chloride etrachloroethene	5	1	+ +						 	2.5		2.1	-	NS NS	N
oluene	100	1	3.9	5					-	۵.ن		۷.۱		NS	N
richoloroethene	5	1	1 3.5	_	1.0				t	5.8		3.3		NS	N
richlorofluoromethane	-	1	 		1.0					2.0		0.0		NS	N
/inyl Chloride	2	1	14.	9	14.4	1.6				1.2	2.7			NS	N
	•					March 20	, 2023								
enzene	5	1	4.		2.5					2.7	2.0	2.1		NS	N
Chlorobenzene	100	1	8.8	5							4.5			NS	N
Chloroethane	-	1			1.2			1.2						NS	N
,4-Dichlorobenzene	-	1	23.								10.1			NS	N
,1-Dichloroethane	-	1	5		2.2	5.2	2.7			17.6	4.9	11.8		NS	N
,1-Dichloroethene	5	1								3		1.3		NS	N
is-1,2-Dichloroethene	70	1			15.2	1.7	4.3			27.6	13.5	29.3		NS	N
Methylene Chloride	5	5								38.7		15		NS	N
Tetrachloroethene	5	1		_						2.2		2.2		NS	N
Toluene	100	1	3.8	3								0.4		NS	N
richoloroethene	5	1	-							5.7 2.1		2.4		NS NS	N N
/inyl Chloride	2	1	17	,	14.4	3.7				1.4	3.5			NS	N
	_					eptember	21, 2023								
Benzene	5	1	4.0	3	2.6	1.2				2.7	1.8	2.4		NS	N
Chlorobenzene	100	1	7.0	3		2.3				1.4	3.9	1.6		NS	N
,4-Dichlorobenzene	-	1	20.	.1	5.2	2.9				2.7	9	3.8		NS	N
,1-Dichloroethane	-	1	4.8	3	3.6	5	2.0			17.9	4.7	11.3		NS	N
,1-Dichloroethene	5	1								3		1.4		NS	N
is-1,2-Dichloroethene	70	1			13.4		3.6			30.3	11.8	32.1		NS	N
Methylene Chloride	5	5								46.4		17.1		NS	N
etrachloroethene	5	1								2.5		2		NS	N
oluene	100	1	3.3	3										NS	N
richoloroethene	5	1								6.0		3.2		NS	N
richlorofluoromethane	-	1								2.1				NS	١
'inyl Chloride	2	1	14.	1	14.4	3.1				1.1	2.8			NS	N
	T -				2.0	arch 25 &	26, 2024	4.0		0.5	4.7	0.4		NO	
enzene	5	1	4.6		3.0			1.6		2.5	1.7	2.4	ļ	NS	l N
Chlorobenzene	100	1	7.5)				2.0	1		4.2	1.5	-	NS	١
chloroethane ,4-Dichlorobenzene	-	1	21					2.2	-		0.2	3.6		NS NS	N
,4-Dichloropenzene .1-Dichloroethane	-	1	4.		2.0	5.2	1.7		 	16.2	9.3 4.5	9.7	-	NS NS	N
.1-Dichloroethane	5	1	4.		∠.∪	ا.∠	1.7		 	2.2	4.3	9.7		NS NS	N
is-1,2-Dichloroethene	70	1	 	-	21	1.8	2.6			33.2	10.8	25.1		NS	N
Methylene Chloride	5	5				1.0	2.0		1	40.4	10.0	10		NS	N
etrachloroethene	5	1	1							2.0		1.3		NS	,
oluene	100	1	1.9	9										NS	,
richoloroethene	5	1	1							5.9		2.7		NS	N
richlorofluoromethane	-	1								2.0				NS	N
/inyl Chloride	2	1	15.	6	19.7	4.3					3.0			NS	N
(ylenes (Total)	10,000	1										3.5		NS	N
lotes: g/L = micrograms per liter //CL = Maximum Contaminant Level rgl = practical quantitation limit = Estimated Value Shaded concentrations exceed their Miss - TMW-12 and TMW-13 were not s		to the well v			ufficient v	olume of wa	ter and obst	ructions with	hin the wells	observed du	uring the Ma	rch 2023 sa	mpling even	t	

TABLE D VOLATILE ORGANIC COMPOUNDS (VOCs) DETECTED (µg/L) NEWBERRY COUNTY CLASS THREE MSW LANDFILL

Constituent	MCL	pql	MW-1R	MW-2RR	MW-3	MW-4R	MW-5	MW-6	MW-7R	MW-8	TMW-9	TMW-10	TMW-11	TMW-12	TMW-1
						tember 24	& 25, 202	4							
Benzene	5	1		4.3	1.7	1.1				2.8	1.8	2.0		NS	NS
Chlorobenzene	100	1									3.5	1.3		NS	NS
Chloroethane	-	1						1.2						NS	NS
1,4-Dichlorobenzene	-	1									8.2	3.5		NS	NS
1,1-Dichloroethane	-	1		3.5	1.5	5.2	1.4			17.1	3.3	9.0		NS	NS
1,1-Dichloroethene	5	1								2.2				NS	NS
cis-1,2-Dichloroethene	70	1			9.8		2.2			34.4	8.7	25.4		NS	NS
Methylene Chloride	5	5								45.2		13.7		NS	NS
Tetrachloroethene	5	1								2.4				NS	NS
Toluene	100	1		2.3										NS	NS
Tricholoroethene	5	1								6.0		2.4		NS	NS
Trichlorofluoromethane	-	1								1.5				NS	NS
Vinyl Chloride	2	1		11.8	8.8	3.6					3.0			NS	NS
						March 24	, 2025								
Benzene	5	1		4.7		1.1		2.3		2.4	1.7	2.1		NS	NS
Chloroethane	-	1		1.4		1.3		2.1						NS	NS
1,4-Dichlorobenzene	-	1		24.3						2.0				NS	NS
1,1-Dichloroethane	-	1		4.1	1.3	5.1	1.6			14.3	4.3	9.3		NS	NS
1,1-Dichloroethene	5	1								1.7				NS	NS
cis-1,2-Dichloroethene	70	1			3.4		2.4			33.7	10.9	25.6		NS	NS
Methylene Chloride	5	5								41.5		12.1		NS	NS
Tetrachloroethene	5	1								2.4		1.7		NS	NS
Toluene	100	1		1.8										NS	NS
Tricholoroethene	5	1								5.1		3.2		NS	NS
Trichlorofluoromethane	-	1								1.4				NS	NS
Vinyl Chloride	2	1		14.5	6.1	4.4					3.7			NS	NS
Notes: Ig/L = micrograms per liter MCL = Maximum Contaminant Level pql = practical quantitation limit I = Estimated Value Shaded concentrations exceed their Mt NS - TMW- 12 and TMW-13 were not s															

- and 2.0 μ g/L, respectively. The pql for Benzene is 1 μ g/L and the MCL is 5 μ g/L.
- <u>Chlorobenzene</u> was detected in the groundwater samples collected from TMW-9 and TMW-10 at concentrations of 3.5 μ g/L and 1.3 μ g/L. The pql for Chlorobenzene is 1 μ g/L and the MCL is 100 μ g/L;
- <u>Chloroethane</u> was detected in the groundwater sample collected from MW-6 at a concentration of 1.2 μ g/L. The pql for Chloroethane is 1 μ g/L;
- 1,4-Dichlorobenzene was detected in the groundwater samples collected from MW-9 and TMW-10 at concentrations of 8.2 μg/L and 3.5 μg/L. The pql for 1,4-Dichlorobenzene is 1 μg/L;
- 1,1-Dichloroethane was detected in the groundwater samples collected from MW-2RR, MW-3, MW-4R, MW-5, MW-8, TMW-9, and TMW-10 at concentrations of 3.5 μg/L, 1.5 μg/L, 5.2 μg/L, 1.4 μg/L, 17.1 μg/L, 3.3 μg/L, and 9.0 μg/L, respectively. The pql for 1,1-Dichloroethane is 1 μg/L;
- 1,1-Dichloroethene was detected in the groundwater sample collected from MW-8 at a concentration of 2.2 μg/L. The MCL for 1,1-Dichloroethene is 5 μg/L and the pql is 1 μg/L;
- <u>Cis-1,2-Dichloroethene</u> was detected at concentrations of 9.8 μg/L, 2.2 μg/L, 34.4 μg/L, 8.7 μg/L, and 25.4 μg/L, in the groundwater samples collected from MW-3, MW-5, MW-8, TMW-9, and TMW-10, respectively. The MCL for cis-1,2-Dichloroethene is 70 μg/L and the pql is 1 μg/L;
- <u>Methylene Chloride</u> was detected in groundwater samples from MW-8 and TMW-10 at concentrations of **45.2** μg/L and **13.7** μg/L, respectively. The pql and the MCL for Methylene Chloride is 5 μg/L;
- <u>Tetrachloroethene</u> was detected in the groundwater samples collected from MW-8 at a concentration of 2.4 μg/L respectively. The pql for Tetrachloroethene is 1 μg/L and the MCL is 5 μg/L;

- <u>Toluene</u> was detected in the groundwater sample collected from MW-2RR at a concentration of 2.3 μg/L. The pql for Toluene is 1 μg/L and the MCL is 100 μg/L;
- <u>Trichloroethene</u> was detected in the groundwater sample collected from MW-8 and TMW-10 at concentrations of **6.0 μg/L** and 2.4 μg/L, respectively. The pql for Trichloroethene is 1 μg/L and the MCL is 5 μg/L;
- <u>Trichlorofluoromethane</u> was detected in the groundwater sample collected from MW-8 at a concentrations of 1.5 μg/L. The pql for Trichlorofluoromethane is 1 μg/L; and
- <u>Vinyl Chloride</u> was detected in the groundwater sample collected from MW-2RR, MW-3, MW-4R, MW-8 and TMW-9 at concentrations of **11.8 μg/L**, **8.8 μg/L**, **3.6 μg/L**, and **3.0 μg/L**, respectively. The pql for Vinyl Chloride is 1 μg/L and the MCL is 2 μg/L.

March 24, 2025 Semiannual Sampling Event:

Twelve (12) VOCs were detected in excess of their pqls and Methylene Chloride, Trichloroethene, and Vinyl Chloride were detected in excess of their MCLs during March 24, 2025 semiannual sampling event (Table D).

- Benzene was detected in the groundwater samples collected from MW-2RR, MW-4, MW-6, MW-8, TMW-9, and TMW-10, at concentrations of 4.7 μg/L, 1.1 μg/L, 2.3 μg/L, 2.4 μg/L, 1.7 μg/L and 2.1 μg/L, respectively. The pql for Benzene is 1 μg/L and the MCL is 5 μg/L;
- <u>Chloroethane</u> was detected at a concentration of 1.4 μg/L, 1.3 μg/L and 2.1 μg/L in the groundwater sample collected from MW-2RR, MW-4R, and MW-6. The pql for Chloroethane is 1 μg/L;
- 1,4-Dichlorobenzene was detected in the groundwater samples collected from MW-2RR and MW-8 at concentrations of 24.3 μg/L and 2.0 μg/L, respectively. The pql for 1,4-Dichlorobenzene is 1 μg/L;

- 1,1-Dichloroethane was detected in the groundwater samples collected from MW-2RR, MW-3, MW-4R, MW-5, MW-8, TMW-9, and TMW-10 at concentrations of 4.1 μg/L, 1.3 μg/L, 5.1 μg/L, 1.6 μg/L, 14.3 μg/L,4.3 μg/L and 9.3 μg/L, respectively. The pql for 1,1-Dichloroethane is 1 μg/L;
- 1,1-Dichloroethene was detected in the groundwater sample collected from MW-8 at a concentration of 1.7 μ g/L. The MCL for 1,1-Dichloroethene is 5 μ g/L and the pql is 1 μ g/L;
- <u>Cis-1,2-Dichloroethene</u> was detected at concentrations of 3.4 μg/L, 2.4 μg/L, 33.7 μg/L, 10.9 μg/L, and 25.6 μg/L in the groundwater samples from MW-3, MW-5, MW-8, TMW-9, and TMW-10, respectively. The MCL for cis-1,2-Dichloroethene is 70 μg/L and the pql is 1 μg/L;
- <u>Methylene Chloride</u> was detected in groundwater samples from MW-8 and TMW-10 at concentrations of **41.5** μg/L and **12.1** μg/L, respectively. The pql and the MCL for Methylene Chloride is 5 μg/L;
- <u>Tetrachloroethene</u> was detected in the groundwater samples collected from MW-8 and TMW-10 at concentrations of 2.4 μ g/L and 1.7 μ g/L, respectively. The pql for Tetrachloroethene is 1 μ g/L and the MCL is 5 μ g/L;
- <u>Toluene</u> was detected in the groundwater sample collected from MW-2RR at a concentration of 1.8 μg/L. The pql for Toluene is 1 μg/L and the MCL is 100 μg/L;
- <u>Trichloroethene</u> was detected in the groundwater sample collected from MW-8 and TMW-10 at concentrations of **5.1 μg/L** and 3.2 μg/L, respectively. The pql for Trichloroethene is 1 μg/L and the MCL is 5 μg/L;
- <u>Trichlorofluoromethane</u> was detected in the groundwater sample collected from MW-8 at a concentration of 1.4 μg/L. The pql for Trichlorofluoromethane is 1 μg/L; and

• <u>Vinyl Chloride</u> was detected in the groundwater samples collected from MW-2RR, MW-3, MW-4R, and TMW-9 at concentrations of **14.5 μg/L**, **6.1 μg/L**, **4.4 μg/L**, and **3.7 μg/L**, respectively. The pql for Vinyl Chloride is 1 μg/L and the MCL is 2 μg/L; and

4.2 Surface Water - Cannons Creek

Surface water samples were collected from Cannons Creek downstream from the Newberry County Landfill and analyzed for the constituents listed in Appendix IV of the SCDES *R.61-107-19*. One (1) constituent, Barium, was detected during the September 24 & 25, 2024 sampling event, and two (2) constituents, Barium, and Zinc, were detected in the surface water sample collected during the March 24, 2025 semiannual sampling event. Barium was detected at a concentration of 60.6 µg/L during the September 24 & 25, 2024 sampling event, and at a concentration of 52.6 µg/L during the March 24, 2025 sampling event. The pql for Barium is 5 µg/L and the MCL for Barium is 2,000 µg/L. Zinc was detected at a concentration of 19.7 µg/L during the March 24, 2025 sampling event. The pql for Zinc is 10 µg/L and the MCL is 5,000 µg/L. No constituents were detected in excess of their MCLs during these sampling events. The results for the surface water samples collected at the Newberry County Landfill are listed on Table E.

TABLE E

CONSTITUENTS DETECTED (µg/L) CANNONS CREEK

NEWBERRY COUNTY CLASS THREE MSW LANDFILL

			June 24, 2007	December 31, 2007	April 4, 2008	March 13, 2009
Constituent	MCL	pql				
cis-1,2-Dichloroethene	70	<1.0				2.57J
			December 3, 2009	June 22, 2010	December 1, 2010	February 6, 2012
Barium	2,000	25			248	
			August 30, 2012	February 21, 2013	August 29, 2013	February 4, 2014
1,1-Dichloroethane	-	<1.0				1.5
Acetone	50	5		2.23J		
Barium	2,000	25		52	60	297
cis-1,2-Dichloroethene	70	<1.0		0.233J		2.8
			November 4, 2014	February 4, 2015	July 28, 2015	February 12, 2016
Barium	2,000	25	56	46	74	58
			August 17, 2016	March 24, 2017	November 6, 2017	March 19, 2018
Barium	2,000	25	65	47	83	52
			September 21, 2018	March 8, 2019	September 26, 2019	March 19, 2020
Barium	2,000	25/5*	79	51	86.4	60.1
			September 23 & 24, 2020	March 19 & 20, 2021	September 29, 2021	March 29 & 30, 2022
Barium	2,000	25/5*	65.3	49.1	65.0	49.4
			December 26, 2022	March 20, 2023	September 21, 2023	March 25 & 26, 2024
Barium	2,000	5	42.7	46.8	52.7	51.6
			September 24 & 25, 2024	March 24, 2025		
Barium	2,000	5	60.5	52.6		
Zinc	5,000	10		19.7		

Notes:

 μ g/L = micrograms per liter

MCL = Maximum Contaminant Level

pql = Practical Quantitation Limit

J = Estimated Value

Bolded concentrations exceed their MCL for drinking water limit at the time of sampling.

Concentrations that are not shown do not exceed their pql at the time of sampling.

* Barium pql = 25 µg/L for alaysis conducted by Shealy Environmental Services, LLC, September 21, 2018, March 19 & 20, 2021, and September 29, 2021 sampling events

5.0 STATISTICAL ANALYSIS

A statistical analysis was conducted to determine if the inorganic data indicated a "statistically significant increase over background" in accordance with SCDES *R.61-107.19*. Samples collected from the upgradient monitoring well (MW-1R), and the ten (10) detection monitoring wells (MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11) during the March 24, 2025 semiannual sampling event were evaluated in the statistical analysis. TMW-12 and TMW-13 were reported as unable to be sampled during the sampling event, therefore these wells were not used in the statistical analysis.

5.1 Model

The ChemPoint v. 4.4 and ChemStat v. 6.3 computer programs, developed and distributed by Starpoint Software, were used for statistically evaluating the inorganic groundwater chemistry data. The United States Environmental Protection Agency (EPA) requires that a minimum of four (4) independent sampling events be used to establish an adequate statistical background for all constituents detected. A total of 28 sampling events from the June 22, 2010 sampling event through the March 24, 2025 semiannual sampling event were used to establish the necessary background data for the statistical analysis.

5.2 Constituents Tested

Monitoring wells MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11 were used as the downgradient, compliance wells, and monitoring well MW-1R was used as the upgradient, background well. The statistical analysis was conducted using the concentrations of the inorganic constituents, Barium, Cobalt, and Zinc, which were detected in excess of their pqls in one or more of the ten (10) detection monitoring wells (MW-2RR, MW-3, MW-4R, MW-5, MW-6, MW-7R, MW-8, TMW-9, TMW-10, and TMW-11) that could be sampled during the March 24, 2025 semiannual sampling event. Since no other inorganic constituents were detected in excess of their pqls in the detection monitoring wells, they were not used in the statistical analysis. In addition, statistical analyses of the pH and the Specific Conductance were conducted.

5.3 Approach

The first step in the statistical analysis is to determine if the data follows a normal distribution compared to the historical data of previous monitoring events for the given monitoring well. The Skewness Coefficient (SC) method was used to determine the normality of the groundwater monitoring data. If the SC was calculated to be approximately zero (less than +1 and greater than -1), the data followed a normal distribution; however, if the SC was greater than +1 or less than -1, the data followed an asymmetric distribution. If the SC followed an asymmetric distribution, the data was transformed using the Natural Log Method and was retested to determine the distribution of the transformed data. If the results of the SC statistical analyses using the Natural Log Method indicated that the original data and transformed data followed an asymmetric distribution, the Wilcoxon Rank-Sum Comparison Test was performed to determine which wells indicated a "statistically significant increase over background" by comparing the well's historical constituent and/or indicator parameter levels to the background established by the upgradient monitoring well. In the event that the Wilcoxon Rank-Sum Test indicated a normal distribution, there is no evidence of "statistically significant increase over background." If the Wilcoxon Rank-Sum Test returns as asymmetrical distribution, there is statistical evidence of potential increase over background for that constituent.

5.4 Results

The results of the SC statistical analysis indicated that the data and log transformed data had an asymmetric distribution for:

- Barium, Cadmium, and Cobalt in MW-1R (upgradient well);
- Cadmium in MW-3;
- Barium, Cadmium, and Zinc in MW-4R;
- Cadmium, Cobalt, and Zinc in MW-5;
- Cadmium in MW-6;
- Cobalt and Zinc in MW-7R;
- Cadmium, Cobalt and Zinc in MW-8;
- Barium, Cadmium, and Cobalt in TMW-9;

- Cadmium, Cobalt, and Zinc in MW-10; and
- Cadmium, Cobalt, pH, and Specific Conductance in TMW-11.

Therefore, the Wilcoxon Rank-Sum Comparison Test was performed for these constituents in these detection-monitoring wells to determine if the statistical analysis indicated a "statistically significant increase over background" when compared with the upgradient monitoring well, MW-1R. The Wilcoxon Rank-Sum Comparison Test statistical analysis was not performed for the constituents detected in MW-1R since it is the upgradient monitoring well and was utilized as the basis for comparison for the remaining wells.

The results of the Wilcoxon Rank-Sum Comparison Test indicated a "statistically significant increases over background" for Barium in MW-4R and TMW-9, respectively. The results of the statistical analysis (*ChemStat v. 6.3* output) are included in Appendix B, and are summarized in Table F.

TABLE F

STATISTICAL ANALYSIS RESULTS

March 24, 2025

NEWBERRY COUNTY CLASS THREE MSW LANDFILL

	MW	′-1R*	MW-	-2RR	M۷	V-3	MV	/-4R	M۷	V-5	M۷	V-6	MW	/-7R	MV	V-8	TM	W-9	TMV	V-10	TMV	V-11
Constituent	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W
Barium	Α	NC	N	NC	N	NC	Α	YES	N	NC	N	NC	N	NC	N	NC	Α	YES	N	NC	N	NC
Cadmium	Α	NC	N	NC	Α	NO	Α	NO	Α	NO	Α	NO	N	NC	Α	NO	Α	NO	Α	NO	Α	NO
Cobalt	Α	NC	N	NC	N	NC	N	NC	Α	NO	Ν	NC	Α	NO	Α	NO	Α	NO	Α	NO	Α	NO
Zinc	Α	NC	N	NC	N	NC	Α	NO	Α	NO	Ν	NC	Α	NO	Α	NO	N	NC	Α	NO	N	NC
рН	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	Α	NO
Specific Conductance	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	N	NC	Α	NO

Notes:

- S = Skewness Coefficient Test in ChemStat v. 6.3
- W = Wilcoxon Rank-Sum Comparison Test in ChemStat v. 6.3
- N = No statistically significant evidence of asymmetry (skewness >-1 and <+1) in either natural or log transformed.
- **A** = Statistically significant evidence of asymmetry (skewness <-1 or >+1).
- NO = No "statistically significant increase over background" found in the detention well when compared to the upgradient well.
- NC = Not calculated because it is either the upgradient well or there was no statistically significant evidence of
- YES = "Statistically significant increase over background" found in the detection well when compared to the upgradient well.

6.0 METHANE MONITORING

The methods that have been implemented to manage methane gas at the Newberry County Class Three MSW Landfill are described in Section 1.3 of this report. The current methane management systems in use include passive gas vents and the Soil Gas Extraction System. Methane monitoring is conducted on a quarterly basis to evaluate the effectiveness of those methane management methods. Alliance Consulting Engineers, Inc. conducted the most recent quarterly methane monitoring event on March 19, 2025. During the monitoring event, methane gas measurements were made in each of the eleven (11) gas monitoring probes (GMPs) (GMP-1S, GMP-1D, GMP-3S, GMP-3D, GMP-4S, GMP-5S, GMP-5D, GMP-6S, GMP-6D, GMP-7S, and GMP-7D). The results of the methane monitoring events conducted since March 2007 at the Newberry County Class Three MSW Landfill are provided in Table G.

The Lower Explosive Level (LEL) for methane is five percent (5%) methane by volume. The results summarized in Table G indicate that prior to July 2015, methane was consistently detected at levels exceeding the LEL in GMP-3S, GMP-3D, GMP-4S, GMP-5S, GMP-5D, GMP-6S and GMP-6D. Since the installation of the Soil Gas Extraction System during May 2015, a reduction in the detection of methane has been observed at the landfill. By the July 2017 monitoring event, none of the gas monitoring probes were found to have any methane present. Since that time, however, there have been several periods of time when the Soil Gas Extraction System experienced maintenance or equipment problems and occasionally has been out of operation. After being down for an extended period of time prior to the September 2018 monitoring event, repairs were made to the Soil Gas Extraction System and, as of November 2018, the system was again in operation, which resulted in the methane levels dropping again. The system was also down due to storm-related damage to the electrical system during part of 2019, but was returned to operation during October 2019 and was operating at the time of the November 1, 2019 methane monitoring event which registered 0.0% methane by volume in each of the eleven (11) GMPs.

The Soil Gas Extraction System was noted to be rendered inoperable by lightning and was not running at the time of the July 8, 2020 and October 15, 2020 methane monitoring events. During these methane monitoring events an increase in the detection of methane occurred in GMP-3S, GMP-3D, GMP-4S, GMP-5S, GMP-5D, GMP-6S,

				NEWDE	(% M	TABLE G	TECTION (olume)	LANDELL				
GMP No.	Mar-07	Aug-07	Sep-07	Dec-07	RRY COUNT Mar-09	Dec-09	Jun-10	Feb-10	Feb-12	Jun-12	Jul-12	Aug-12
GMP-1S	0	-	-	-	-	-	0.1	0	-	-	0	0
GMP-1D	0	-	-	-	-	-	0	0	-	-	0	0
GMP-3S	0	2.4	19.3	4.8	0.1	-	8.9	0.1	-	9.6	-	1.5
GMP-3D	0	3.2	23.3	5.5	0.1	-	9.3	0.1	-	8.8	-	1.8
GMP-4S	0.5	60.4	36.1	25.8	60.5		36.7	38.3	60.2	-	-	55.2
GMP-5S	2.8	4.2	0.7	0.5	4	-	0.1	0.1	0.1	32.9	-	47.7
GMP-5D	-	-	-	-	18.8	-	11.5	0.1	0.1	0.6	-	1.2
GMP-6S GMP-6D	0.5	43.3	44.3	21.2	0	0.1	52.5 30.7	16.8	49.2 22.6	-	-	0
GMP-7S	0	0	0	- 0	0.1	-	21.4	0.1	22.0	-	0.1	0
GMP-7D	-	-	-	-	0.1	-	10.2	1.5	-	-	0.1	0
CLUB							10.2	1.0			0.1	- ŭ
HOUSE	0	0	0	0	0	0	0	0	0	-	-	0
SHED	0	0	0	0	0	-	0.1	0	-	-	0.1	0
GMP No.	Feb-13	Aug-13	Feb-14	May-14	Nov-14	Feb-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15
GMP-1S	0	0.3	-	-	0	0.1	0	-	-	-	-	-
GMP-1D	0	0.2	-	- 20.7	0	0.1	0	-	-	-	-	-
GMP-3S GMP-3D	0	52.6 52.8	-	30.7 28.5	15 6.5	8 6.5	0.03	0	0	0	0	0
GMP-3D	61.3	60.1	-	28.5 59	39	37	0.01	0	0	-	0	0
GMP-4S	43.3	58.1	H :	57.2	34	27	0.01	0	0	0	0	0
GMP-5D	2.8	32.4		19.1	5.6	2.5	0	0	0	0	0	0
GMP-6S	34.3	57	-	47.1	34	27	14	38.4	48.4	38	34.4	0
GMP-6D	0	49.3	-	41.8	22	18	17	46.3	54.2	45	15.4	0
GMP-7S	0	0.2	-	0.1	0.03	0	0	-	-	-	-	-
GMP-7D	0	0.2	-	16.3	0.7	0.08	0	-	-	-	-	-
CLUB												
HOUSE	0	0.4	-	0.1	0.01	0	0	-	-	-	-	-
SHED	0	0.2	-	0.1	0.01	0	0	-	-	-	-	-
GMP No.	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16	Sep-16	Apr-17	Jul-17	Oct-17
GMP-1S	Jan-10 -	0	War-10	Api-10	Way-10	Juli-10	Jui-10 -	0 Aug-10	3ep-10	0 0	0	0
GMP-1D		0		-	-		-	0	-	0	0	0
GMP-3S	0	0	0	0	0	0	0	0	0	0	0	0
GMP-3D	0	0	0	0	0	0	0	0	0	0	0	0
GMP-4S	0	0	0	0	0	0	0	0	0	24	0	16
GMP-5S	0	0	0	0	0	0	0	0	0	0	0	0
OMB-	0	0	0	0	0	0	0	0	0	0	0	0
GMP-5D			_					45.7	55	0		20
GMP-6S	45.2	42.1	45.5	42.7	51.1	53.3	50				0	
GMP-6S GMP-6D	45.2 22.3	42.1 14.7	45.5 17.7	18.5	31.7	36.7	51.3	49	52	0	0	8
GMP-6S GMP-6D GMP-7S	45.2 22.3 0	42.1 14.7	45.5 17.7	18.5 -	31.7	36.7	51.3 -	49	52 -	0	0	8
GMP-6S GMP-6D GMP-7S GMP-7D	45.2 22.3	42.1 14.7	45.5 17.7	18.5	31.7	36.7	51.3	49	52	0	0	8
GMP-6S GMP-6D GMP-7S GMP-7D CLUB	45.2 22.3 0	42.1	45.5 17.7	18.5 -	31.7	36.7	51.3 -	0 0.65	52 -	0	0 0 0	8
GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE	45.2 22.3 0	42.1 14.7	45.5 17.7	18.5 -	31.7	36.7	51.3 -	49	52 -	0	0	8
GMP-6S GMP-6D GMP-7S GMP-7D CLUB	45.2 22.3 0 0	42.1 14.7 - -	45.5 17.7 -	18.5 - - -	31.7	36.7	51.3	0 0.65	52 - - -	0 0 0	0 0 0	8 0 0
GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE	45.2 22.3 0 0	42.1 14.7 - -	45.5 17.7 -	18.5 - - -	31.7	36.7	51.3	0 0.65	52 - - -	0 0 0	0 0 0	8 0 0
GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE SHED GMP No. GMP-1S	45.2 22.3 0 0	42.1 14.7 - - 0 0	45.5 17.7 - - -	18.5 - - -	31.7	36.7	51.3	0 0.65 0	52 - - - -	0 0 0 -	0 0 0 0 0.001	8 0 0
GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE SHED GMP No. GMP-1S GMP-1D	45.2 22.3 0 0 - - - Feb-18 0	42.1 14.7 - - 0 0 0 Apr-18 0	45.5 17.7 - - - - - - - - - - 0	18.5 - - - - - Sep-18 0	31.7 - - - - - - - - 0 0	36.7	51.3 - - - - Nov-19 0	0 0.65 0 0 0 Dec-19 0	52 - - - - - - - - 0 0	0 0 0 - - - - Apr-20 0	0 0 0 0.001 0 Jul-20 0	0 0 - - - Oct-20 0
GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE SHED GMP No. GMP-1S GMP-1D GMP-3S	45.2 22.3 0 0 - - - - Feb-18 0 0	42.1 14.7 - 0 0 0 Apr-18 0 0	45.5 17.7 - - - - - - - - - - - 0 0	18.5 - - - - - Sep-18 0 0 10	31.7 	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - Nov-19 0 0	49 0 0.65 0 0 0 Dec-19 0 0	52 	0 0 0 - - - - Apr-20 0 0	0 0 0 0.001 0 Jul-20 0 0	8 0 0 - - - Oct-20 0 0
GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE SHED GMP No. GMP-1S GMP-1D GMP-3S GMP-3D	45.2 22.3 0 0 - - - Feb-18 0 0 0	42.1 14.7 - 0 0 0 Apr-18 0 0 0	45.5 17.7 - - - - - - - - - - - - 0 0 0	18.5 - - - - - - - - - - - - -	31.7 	36.7 - - - - - - - - - - - -	51.3 - - - - Nov-19 0 0 0	49 0 0.65 0 0 0 Dec-19 0 0 0	52 - - - - - - - - - - - - - 0 0 0	0 0 0 - - - - Apr-20 0 0 0	0 0 0 0.001 0 Jul-20 0 0 22	8 0 0 - - - Oct-20 0 0 24 31
GMP-6S GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-3S GMP-3S GMP-3D GMP-4S	45.2 22.3 0 0 - - - - - - - - - - - 0 0 - - - -	42.1 14.7 - - 0 0 0 Apr-18 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 - - - - - Sep-18 0 0 10 15 12	31.7 - - - - - - - - - - - 0 0 0 0 0	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - Nov-19 0 0 0 0	49 0 0.65 0 0 0 Dec-19 0 0 0 0	52 - - - - - - - - - 0 0 0 0 0	0 0 0 - - - - - - - 0 0 0 0 0	0 0 0 0.001 0 0 0 0 0 22 9	8 0 0 - - - Oct-20 0 0 24 31 52
GMP-6S GMP-7D GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1D GMP-3S GMP-3D GMP-3S GMP-5S	45.2 22.3 0 0 - - - - - - - - - - - 0 0 0 0 0 0	42.1 14.7 - 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 	31.7 - - - - - - - - 0 0 0 0 0 0	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - - - - - - 0 0 0 0 0 0 0	49 0 0.65 0 0 0 0 0 0 0 0 0 0	52 - - - - - - 0 0 0 0 0 0 0	0 0 0 - - - 0 0 0 0 0 0	0 0 0 0.001 0 0 0 0 0 22 9 25 0	8 0 0 - - - 0 0 0 24 31 52 30
GMP-6S GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1D GMP-3S GMP-3D GMP-4S GMP-5S GMP-5S	45.2 22.3 0 0 	42.1 14.7 - - 0 0 0 Apr-18 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - 0 0 0 0 0 0	18.5 - - - - - - - - - - - - -	31.7 - - - - - - - - - - - - - - - 0 0 0 0	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - - - - - - - - -	49 0 0.65 0 0 0 0 0 0 0 0 0 0	52 - - - - - - - - - - - - 0 0 0 0 0 0 0	0 0 0 - - - - - - - - - - 0 0 0 0 0 0	0 0 0 0.001 0 Jul-20 0 0 0 22 9 25 0	8 0 0 - - Oct-20 0 0 0 24 31 52 30 6
GMP-6S GMP-7D GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1D GMP-3S GMP-3D GMP-3S GMP-5S	45.2 22.3 0 0 - - - - - - - - - - - 0 0 0 0 0 0	42.1 14.7 - 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 	31.7 - - - - - - - - 0 0 0 0 0 0	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - - - - - - 0 0 0 0 0 0 0	49 0 0.65 0 0 0 0 0 0 0 0 0 0	52 - - - - - - 0 0 0 0 0 0 0	0 0 0 - - - 0 0 0 0 0 0	0 0 0 0.001 0 0 0 0 0 22 9 25 0	8 0 0 - - - 0 0 0 24 31 52 30
GMP-6S GMP-7D GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-13 GMP-3D GMP-3D GMP-4S GMP-5D GMP-5D	45.2 22.3 0 0 - - - - Feb-18 0 0 0 0 0 0	42.1 14.7 - - 0 0 0 - - - 0 0 0 0 0 0 0 2 2 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 - - - - - - - - - - - - -	31.7 	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - - - - - - - - -	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 	0 0 0 0 0.001 0 0 0 0 0 22 9 25 0 0	8 0 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1S GMP-3D GMP-3S GMP-3S GMP-5S GMP-5S GMP-5S GMP-6D	45.2 22.3 0 0 	42.1 14.7 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - 0 0 0 0	18.5 - - - - - - - - - - - - -	31.7 - - - - - - - - - - - - -	36.7 - - - - - - - - - - - - - - - - - - -	51.3 - - - - - - - - - - - - -	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 0 	0 0 0 0.001 0 0 0 0 0 22 9 25 0 0 0	8 0 0 - - - Oct-20 0 0 0 24 31 52 30 6 34
GMP-6S GMP-7D GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1S GMP-3S GMP-3S GMP-5S GMP-5S GMP-6D GMP-6S GMP-6D GMP-7S GMP-7D CLUB	45.2 22.3 0 0 	42.1 14.7 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 	31.7 	36.7 	51.3 	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 - - - - - - - - - 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 2 2 9 25 0 0 0 3 3 3 0	8 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1D GMP-3S GMP-3D GMP-4S GMP-5S GMP-5S GMP-5S GMP-5G GMP-6D GMP-6D GMP-6D GMP-7D CLUB HOUSE	45.2 22.3 0 0 	42.1 14.7 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - 0 0 0 0	18.5 	31.7 	36.7 	51.3 	49 0 0.65 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 	0 0 0 0 0.001 0 0 0 0 22 9 9 25 0 0 0 0 0	8 0 0
GMP-6S GMP-7D GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1S GMP-3S GMP-3S GMP-5S GMP-5S GMP-6D GMP-6S GMP-6D GMP-7S GMP-7D CLUB	45.2 22.3 0 0 0 	42.1 14.7 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 	31.7 	36.7	51.3	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 33 0	8 0 0 0 0 0 0 0 0 31 52 30 6 34 37 0
GMP-6S GMP-7S GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1D GMP-3S GMP-1D GMP-3S GMP-5D GMP-6S GMP-6S GMP-6S GMP-6S GMP-7D CLUB HOUSE SHED	45.2 22.3 0 0	42.1 14.7 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5	31.7 	36.7	51.3	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 0 	0 0 0 0 0.001 0 0 0 0 22 9 25 0 0 0 33 0 0	8 0 0
GMP-6S GMP-7D GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1D GMP-3S GMP-3D GMP-3S GMP-5S GMP-5S GMP-5S GMP-6D GMP-7S GMP-7S GMP-7D CLUB HOUSE SHED	45.2 22.3 0 0	42.1 14.7 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5 Sep-18 0 0 10 15 12 10 0 22 21 0 0	31.7 - - - - - - - - - - - - -	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 Mar-23	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 - - - - - - - - - - - - -	0 0 0 0 	0 0 0 0 0.001 0 0 0 0 22 9 25 0 0 0 0 33 0 0	8 0 0 0 0 0 0 0 0 31 52 30 6 34 37 0 21
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1S GMP-1S GMP-5S GMP-5S GMP-6D GMP-6D GMP-7S GMP-6D GMP-7S GMP-7D CLUB SHED	45.2 22.3 0 0	42.1 14.7 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - - - - - - -	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 Mar-23	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 0 	0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 0 0 1 8 1 8 1 8 1 8 1 8 1 8 1 8	8 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1D GMP-3S GMP-3D GMP-3S GMP-3D GMP-5S GMP-5D GMP-5S GMP-5D GMP-5S GMP-5D GMP-7D CLUB HOUSE SHED	45.2 22.3 0 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - -	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 Mar-23 0 0	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 0 18	8 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1S GMP-3S GMP-3S GMP-5S GMP-5S GMP-6D GMP-6S GMP-7S CMP-7D CLUB HOUSE SHED	45.2 22.3 0 0	42.1 14.7 0 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 	18.5	31.7	36.7	51.3	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 - - - - - - - - - - - - -	0 0 0 0 	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 33 0 0 18	8 0 0 0 0 0 0 0 24 31 52 30 6 6 34 37 0 21 -
GMP-6S GMP-7D CLUB HOUSE SHED GMP-NO. GMP-1S GMP-1D GMP-3S GMP-3D GMP-5S GMP-5S GMP-5S GMP-5S GMP-5S GMP-6D GMP-6S GMP-6D GMP-6S GMP-1S GMP-1D CLUB HOUSE SHED	45.2 22.3 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - -	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 Mar-23 0 0 20 15	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 	0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1S GMP-3S GMP-3S GMP-5S GMP-5S GMP-6D GMP-6S GMP-7S CMP-7D CLUB HOUSE SHED	45.2 22.3 0 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 	18.5	31.7	36.7	51.3	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 0 	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 33 0 0 18	8 0 0 0 0 0 0 0 24 31 52 30 6 6 34 37 0 21 -
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1D GMP-3S GMP-3D GMP-4S GMP-5D GMP-6S GMP-6S GMP-6S GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1D GMP-1S GMP-1D GMP-1S GMP-1D GMP-1S GMP-1D	45.2 22.3 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - -	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 Mar-23 0 0 20 15	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 0 0 18 	8 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1S GMP-1S GMP-3S GMP-3D GMP-6S GMP-6D GMP-6S GMP-7S CLUB HOUSE SHED GMP-1D CLUB HOUSE SHED	45.2 22.3 0 0 0	42.1 14.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - -	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 0 Mar-23 0 0 20 15 52 3	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 33 0 0 18 	8 0 0 0
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1D GMP-3S GMP-3D GMP-5S GMP-5D GMP-6D GMP-6D GMP-7S GMP-7S GMP-1D GMP-8S GMP-1D GMP-1S GMP-1D GMP-1S	45.2 22.3 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 0 Mar-23 0 0 15 52 3 4	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 18 	8 0 0 0 0 0 0 0 24 31 52 30 6 6 34 37 0 0 21
GMP-6S GMP-7S GMP-7S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1D GMP-3S GMP-5S GMP-6S GMP-7D CLUB HOUSE SHED GMP-1S GMP-1D GMP-1S GMP-1S GMP-1D GMP-1S GMP-1D GMP-1S GMP-1S GMP-1S GMP-1S GMP-1D GMP-1S GMP-1S GMP-1S GMP-1S GMP-1S GMP-1S GMP-1D GMP-1S GMP-1	45.2 22.3 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 0 0 Mar-23 0 0 20 15 52 3 4 29 0 0	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 33 0 0 18 	8 0 0 0 0 0 0 0 24 31 52 30 6 6 34 37 0 0 21
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1S GMP-1S GMP-5S GMP-5S GMP-6S GMP-6S GMP-6S GMP-1S GMP-1S GMP-1D CLUB SHED GMP-1S	45.2 22.3 0 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7 - - - - - - - - - - - - -	18.5	31.7	36.7	51.3	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 0 0 18 	8 0 0 0 0 0 0 0 0 24 31 52 30 6 34 37 0 0 21
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1D GMP-3S GMP-1D GMP-8S GMP-6S GMP-6S GMP-6S GMP-7D CLUB GMP-1B GMP-7D CLUB GMP-1B GMP-7D CLUB GMP-7D CLUB GMP-7S GMP-7D CLUB	45.2 22.3 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 0 0 Mar-23 0 0 20 15 52 3 4 29 0 0	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 33 0 0 18 	8 0 0 0 0 0 0 0 24 31 52 30 6 6 34 37 0 0 21
GMP-6S GMP-7D CLUB HOUSE SHED GMP-1D GMP-1S GMP-1S GMP-1S GMP-5S GMP-5S GMP-6S GMP-6S GMP-6S GMP-1S GMP-1S GMP-1D CLUB SHED GMP-1S	45.2 22.3 0 0	42.1 14.7 0 0 0 Apr-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.5 17.7	18.5	31.7	36.7	51.3 Nov-19 0 0 0 0 0 0 0 0 0 0 Mar-23 0 0 20 15 52 3 4 29 0 0	49 0 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0	52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 22 9 25 0 0 0 33 0 0 18 	8 0 0 0 0 0 0 0 24 31 52 30 6 6 34 37 0 0 21

S = shallow well
D = deep well
Shaded concentrations exceed LEL
LEL = lower explosive limit (5.00% Methane by volume)

TABLE G METHANE GAS DETECTION (% Methane By Volume) NEWBERRY COUNTY CLASS THREE MSW LANDFILL GMP No. N GMP-1S GMP-1D GMP-3S GMP-3D GMP-4S GMP-5D GMP-6S GMP-6D GMP-7S GMP-7D CLUB HOUSE SHED S = shallow well D = deep well 0 0 N/A N/A 0 0

Shaded concentrations exceed LEL
LEL = lower explosive limit (5.00% Methane by volume)
N/A - GMP-4S was unable to be located most likely from Hurrican damage

GMP-6D, and GMP-7D. Without the gas being gathered by the gas collection system, it builds up in various locations around the closed landfill areas, resulting in the methane readings observed at the GMPs. During the fourth quarterly methane monitoring event for 2021 on December 29, 2021 the Soil Gas Extraction System was observed to be in service and running. All of the eleven (11) GMPs registered 0% methane by volume.

The March 15, 2022 methane monitoring event had all eleven (11) GMPS register 0% methane by volume. However, since the March 2022 monitoring event sections of the Soil Gas Extraction System have been recorded as not functioning properly and experienced periods when the system was not running to its fullest capability or inoperable. Due to the system not functioning properly, the methane by volume in the eleven (11) GMPs has fluctuated during the 2022 and 2023 quarterly monitoring events. It was noted that during the four (4) 2023 quarterly methane monitoring events the vacuum, breaker, and blower motor were noted as not functioning properly on the Soil Gas Extraction System.

This report includes a review of the four (4) most recent quarterly monitoring events conducted at the Newberry County Landfill on June 28, 2024, November 13, 2024, December 31, 2024 and March 19, 2025. During the fourth 2023 to 2024 quarterly monitoring event conducted on June 28, 2024 the blower motor of the Soils Gas Extraction System was observed to be operational, and no methane was registered in any of the GMPs. No methane was registered above its LEL in the GMPs measured during the first, second and third quarterly monitoring reports for 2024 to 2025. During the November 13, 2024 and December 28, 2024 monitoring events, GMP-4S was unable to be located based on a fallen tree from the September 2024 Hurricane Helene. Methane Monitoring Field Data Sheets for the quarterly monitoring event are provided in Appendix C.

Alliance Consulting Engineers, Inc. recommends that methane monitoring be continued at the Newberry County Class Three MSW Landfill in accordance with the EPA Mandatory GHG Reporting Rule.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Alliance Consulting Engineers, Inc. has prepared the following conclusions and recommendations for the current detection and assessment monitoring program from the analytical data for the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events for the Newberry County Class Three MSW Landfill.

7.1 Conclusions

The conclusions reached based upon the review of the data collected from the eleven (11) groundwater monitoring well samples and the one (1) surface water sample collected during the September 24 & 25, 2024 and March 24, 2025 semiannual sampling events are discussed below:

- Three (3) inorganic constituents (Barium, Cobalt and Zinc) were detected in excess of their respective pqls during the September 24 & 25, 2024 annual sampling event. Barium was detected in excess of its MCL in MW-2RR.
- Four (4) inorganic constituents (Barium, Cadmium, Cobalt, and Zinc) were detected in excess of their respective pqls during the March 24, 2025 semiannual sampling event. Barium was detected in excess of its MCL in MW-2RR.
- Thirteen (13) VOCs (Benzene, Chlorobenzene, Chloroethane, 1,4-Dichlorobenzene, 1,1-Dichloroethane, 1,1-Dichloroethene, cis-1,2-Dichloroethene, Methylene Chloride, Tetrachloroethene, Toluene, Trichloroethene, Trichlorofluoromethane, and Vinyl Chloride,) were detected in excess of their pqls during the September 24 & 25, 2024 sampling event; Methylene Chloride, Trichloroethene, and Vinyl Chloride were detected in excess of their MCLs.
- Twelve (12) VOCs (Benzene, Chloroethane, 1,4-Dichlorobenzene, 1,1-Dichloroethane, 1,1-Dichloroethene, cis-1,2-Dichloroethene, Methylene Chloride, Tetrachloroethene, Toluene, Trichlorofluoromethane, and Vinyl Chloride) were detected in excess of their pqls during the March 24, 2025 sampling event; Methylene Chloride,

Trichloroethene, and Vinyl Chloride were detected in excess of their MCLs.

- Barium was detected in excess of its pql during the September 24 & 25, 2024 semiannual sampling event in the downstream surface water sample collected from Cannons Creek.
- Barium and Zinc were detected in excess of their pqls during the March 24, 2025 semiannual sampling event in the downstream surface water sample collected from Cannons Creek.
- The results of the Skewness Coefficient statistical analysis for the March 24, 2025 semiannual sampling events indicated that the original and/or log transformed data followed asymmetric distributions for the inorganic constituents as described in Section 6.0. The results of the Wilcoxon Rank-Sum Comparison Test indicated "statistically significant increase over background" for Barium in the detection-monitoring wells MW-4R and TMW-9.
- Since September 2018, TMW-13 has consistently been bailed dry and not recovered well enough for sample collection. Based on notes from Pace during the March 25 & 26, 2024 sampling event an obstruction was observed approximately 18.25-ft into the well, and unable to be sampled. TMW-13 is the most downgradient monitoring well in the detection-monitoring well network and represents the groundwater quality that potentially discharges into Cannon's Creek. TMW-10 which is north and upgradient of TMW-13, represents the next most downgradient well in regard to the Newberry County Landfill. The groundwater samples collected from TMW-10 have historically detected volatile organic and inorganic constituents in excess of their respective pqls and MCLs. Therefore, collecting groundwater samples downgradient of TMW-10 is necessary to monitor the water quality further downgradient of the landfill.
- Methane was not detected in any of the GMPs during the fourth quarterly methane monitoring event for 2023 to 2024 conducted on June 28, 2024.

• Methane was not detected in any of the GMPs during the first, second, and third quarterly methane monitoring events for 2024 to 2025 conducted on November 13, 2024, December 28, 2024, and March 19, 2025.

7.2 Recommendations

No changes are recommended in the current detection monitoring program for the Newberry County Class Three Municipal Solid Waste Landfill.

SCDES provided comments in a letter dated January 24, 2025 regarding the 2024 Annual Groundwater Monitoring Report which noted the referenced documents were reviewed regarding the requirements of Solid Waste Management Regulations 61-107.19, Part V, Subparts C & E, and the Facility's Solid Waste Permits. Based on this review, the following comments were provided:

- 1. It was noted in the report that Newberry County is in the process of creating an official plan to abandon and replace monitoring wells TMW-12 and TMW-13. The plan should be submitted through the SCDES Permitting Portal and uploaded as an attachment while completing BOTH the schedule titled Revised Groundwater Monitoring Plan and the Solid Waste Monitoring Well Application (D-3736). Please note these wells should be properly abandoned in accordance with Regulation 61-71 by a SC certified well driller and the Water Well Records (DES 1903 Forms) submitted in ePermitting within 30 days of completion. A scheduled titled TMW-12 & TMW-13 Abandonment Report has been set up for you in ePermitting for submittal of these documents;
 - Newberry County is still in the process of determining a plan to abandon and replace these wells.
- 2. The 2024 semiannual groundwater data is similar to historical trends for constituents of concern detected above groundwater protection standards. Therefore, additional assessment will not be required at this time. The Facility should continue monitoring in accordance with the Facility's Permit and most recently approved Groundwater Monitoring Plan; and

- Routine Groundwater Monitoring will continue on a semiannual basis in accordance with the Sampling and Analysis Plan dated October 2014.
- 3. As documented in the report, when the landfill gas extraction system is fully operational, a reduction in the detection of methane has been observed at the landfill. During the latest quarterly monitoring event conducted on June 28, 2024 the blower motor of the Soils Gas Extraction System was observed to be operational and no methane was detected in any of the gas monitoring probes. The Department agrees with the recommendation to routinely inspect, maintain, and repair the system so it can continue to effectively mitigate methane levels. Therefore, routine monitoring should continue in accordance with the most recently approved methane monitoring plan..
 - Routine Monitoring will continue on a quarterly basis in accordance with the Sampling and Analysis Plan dated October 2014.

APPENDIX A REPORT OF LABORATORY ANALYSIS AND FIELD DATA SHEETS

April 25, 2025

Courtney Brooks Alliance Consulting Engineers, Inc 1201 Main St Suite 2020 Columbia, SC 29202

RE: Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Dear Courtney Brooks:

Enclosed are the analytical results for sample(s) received by the laboratory between March 26, 2025 and April 11, 2025. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Charlotte
- Pace Analytical Services Greenwood
- Pace Analytical Services West Columbia

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Eben Buchanan

eben.buchanan@pacelabs.com

Eper D. Bichaman, J.

(770)734-4200 Project Manager

Enclosures

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 South Carolina Drinking Water Cert. #: 99006003

North Carolina Drinking Water Certification #: 37706 Florida/NELAP Certification #: E87627 North Carolina Field Services Certification #: 5342 Kentucky UST Certification #: 84 North Carolina Wastewater Certification #: 12 Louisiana DoH Drinking Water #: LA029

South Carolina Laboratory ID: 99006 Virginia/VELAP Certification #: 460221

Pace Analytical Services Greenwood

405 Sullivan Street, Greenwood, SC 29649 South Carolina Laboratory ID #: 24562001

Pace Analytical Services West Columbia

106 Vantage Point Drive, West Columbia, SC 29172 Louisiana, Dept. of Environmental Quality, cert# 5125 Alaska Dept. of Energy Conservation, Cert# 20-002 North Carolina, DEQ, Water Resources, cert# 329

California ELAP, cert# 3049 New Jersey, Dept. of Env. Protection, cert# NLC 240005

DoD, DoD QSM V5.4, cert# I.2224 Oklahoma, Dept. of Env. Quality, cert# 2023-175

DOE, DoD/DOE QSM V5.4, cert# 1.2224.01 Oregon, ELAP, cert# 4181-006

Florida, Dept. of Health, cert# E87653-70

Pennsylvania, Dept. of Env. Protection, cert# 003

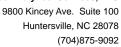
Georgia, Env. Protection Division, cert# E87653

South Carolina, Dept. of Env. Services, cert# 32010001

Illinois, EPA NELAP, cert# 2000552024-9 Texas, Commission on Env. Quality, cert# TX-C24-00083

Kansas, Dept. of Health and Environment, cert# E-10417 Virginia, Dept. of General Services, cert# 13080

Kentucky, Dept. for Env. Protection, UST, cert# 103582 Wisconsin, Dept. of Natural Resources, cert# 399136100 Kentucky, Dept. for Env. Protection, cert# 98037



SAMPLE ANALYTE COUNT

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92787163001	MW-1R	EPA 8011	SMS1	3	PASI-C
			MAB1	3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3 12 50 15 3	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163002	MW-7R	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163003	MW-6	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163004	TMW-11	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163005	MW-2RR	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163006	MW-3	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163007	MW-5	EPA 8011	SMS1	3	PASI-C
			MAB1	11	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163008	MW-4R	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163009	CANNONS CREEK	EPA 8011	SMS1	3	PASI-C
			MAB1	10	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163010	TMW-10	EPA 8011	SMS1	3	PASI-C

SAMPLE ANALYTE COUNT

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		•	MAB1	11	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163011	TMW-9	EPA 8011	SMS1	3	PASI-C
			MAB1	12	PASI-W
		EPA 8260D	SAS	50	PASI-C
		EPA 6020B	BW	15	PASI-WC
92787163012	TRIP BLANK	EPA 8260D	SAS	50	PASI-C
92790600001	MW-8	EPA 8011	SMS1	3	PASI-C
			EDB	10	PASI-W
		EPA 8260D	LMB	50	PASI-C
		EPA 6020B	BK1	15	PASI-WC

PASI-C = Pace Analytical Services - Charlotte
PASI-W = Pace Analytical Services - Greenwood
PASI-WC = Pace Analytical Services - West Columbia

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92787163001	MW-1R					
	Performed by	PACE			03/27/25 12:21	
	Collected By	Trey			03/27/25 12:21	
		Jenkins				
	Collected Date	032425			03/27/25 12:21	
	Collected Time	1049			03/27/25 12:21	
	рН	5.8	Std. Units		03/27/25 12:21	
	Temperature	17	deg C		03/27/25 12:21	
	Static Water Level	34.04	feet		03/27/25 12:21	
	Specific Conductance	84	umhos/cm		03/27/25 12:21	
	Total Well Depth	60.41	feet		03/27/25 12:21	
	Turbidity	5.1	NTU		03/27/25 12:21	
	Odor	none			03/27/25 12:21	
	Appearance	clear			03/27/25 12:21	
EPA 6020B	Barium	144	ug/L	5.0	04/15/25 21:41	
EPA 6020B	Zinc	15.0	ug/L	10.0	04/15/25 21:41	
2787163002	MW-7R					
	Performed by	PACE			03/24/25 11:38	
	Collected By	Chris			03/24/25 11:38	
	•	Corbin				
	Collected Date	032425			03/24/25 11:38	
	Collected Time	1138			03/24/25 11:38	
	рН	6.0	Std. Units		03/24/25 11:38	
	Temperature	17	deg C		03/24/25 11:38	
	Static Water Level	33.40	feet		03/24/25 11:38	
	Specific Conductance	126	umhos/cm		03/24/25 11:38	
	Total Well Depth	60.41	feet		03/24/25 11:38	
	Turbidity	< 1	NTU		03/24/25 11:38	
	Odor	slight			03/24/25 11:38	
	Appearance	clear			03/24/25 11:38	
EPA 6020B	Barium	118	ug/L	5.0	04/15/25 22:10	
EPA 6020B	Cadmium	1.6	ug/L	1.0	04/15/25 22:10	
2787163003	MW-6					
	Performed by	PACE			03/24/25 12:17	
	Collected By	Chris			03/24/25 12:17	
	·	Corbin				
	Collected Date	032425			03/24/25 12:17	
	Collected Time	1217			03/24/25 12:17	
	рН	6.2	Std. Units		03/24/25 12:17	
	Temperature	18	deg C		03/24/25 12:17	
	Static Water Level	22.18	feet		03/24/25 12:17	
	Specific Conductance	610	umhos/cm		03/24/25 12:17	
	Total Well Depth	27.25	feet		03/24/25 12:17	
	Turbidity	8	NTU		03/24/25 12:17	
	Odor	slight			03/24/25 12:17	
	Appearance	clear			03/24/25 12:17	
EPA 8260D	Benzene	2.3	ug/L	1.0	03/28/25 03:35	
EPA 8260D	Chloroethane	2.1	ug/L		03/28/25 03:35	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

∟ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2787163003	MW-6					
PA 6020B	Barium	392	ug/L	5.0	04/22/25 10:35	
PA 6020B	Cobalt	26.0	ug/L	5.0	04/15/25 22:19	
PA 6020B	Zinc	11.0	ug/L	10.0		
2787163004	TMW-11		Ŭ			
	Performed by	PACE			03/24/25 12:49	
	Collected By	Trey			03/24/25 12:49	
	concotod by	Jenkins			00/2 1/20 12:10	
	Collected Date	032425			03/24/25 12:49	
	Collected Time	1249			03/24/25 12:49	
	рН	5.2	Std. Units		03/24/25 12:49	
	Temperature	17	deg C		03/24/25 12:49	
	Static Water Level	21.76	feet		03/24/25 12:49	
	Specific Conductance	69	umhos/cm		03/24/25 12:49	
	Total Well Depth	30.76	feet		03/24/25 12:49	
	Turbidity	1.8	NTU		03/24/25 12:49	
	Odor	none			03/24/25 12:49	
	Appearance	clear			03/24/25 12:49	
PA 6020B	Barium	78.6	ug/L	5.0	04/15/25 22:29	
2787163005	MW-2RR		-9-			
2787163005	Performed by	PACE			03/24/25 13:01	
	Collected By	Chris			03/24/25 13:01	
	Collected by	Corbin			03/24/23 13.01	
	Collected Date	032425			03/24/25 13:01	
	Collected Time	1301			03/24/25 13:01	
	рН	6.5	Std. Units		03/24/25 13:01	
	Temperature	19	deg C		03/24/25 13:01	
	Static Water Level	37.41	feet		03/24/25 13:01	
	Specific Conductance	1698	umhos/cm		03/24/25 13:01	
	Total Well Depth	59.98	feet		03/24/25 13:01	
	Turbidity	8	NTU		03/24/25 13:01	
	Odor	strong	1110		03/24/25 13:01	
	Appearance	clear			03/24/25 13:01	
PA 8260D	Benzene	4.7	ug/L	1.0	03/28/25 07:32	
EPA 8260D	Chloroethane	1.4	ug/L	1.0	03/28/25 07:32	
EPA 8260D	1,4-Dichlorobenzene	24.3	ug/L	1.0	03/28/25 07:32	
EPA 8260D	1,1-Dichloroethane	4.1	ug/L	1.0		
EPA 8260D	Toluene	1.8	ug/L		03/28/25 07:32	
EPA 8260D	Vinyl chloride	14.5	ug/L	1.0	03/28/25 07:32	
EPA 6020B	-	2990		50.0		
EPA 6020B	Barium Cadmium	2990	ug/L			
			ug/L	1.0		
EPA 6020B	Cobalt	12.8	ug/L	5.0	04/15/25 22:38	
EPA 6020B	Zinc	51.0	ug/L	10.0	04/24/25 12:04	
2787163006	MW-3	DAGE			00/04/05 40:40	
	Performed by	PACE			03/24/25 13:40	
	Collected By	Chris			03/24/25 13:40	

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2787163006	MW-3					
	Collected Date	032425			03/24/25 13:40	
	Collected Time	1340			03/24/25 13:40	
	рН	6.4	Std. Units		03/24/25 13:40	
	Temperature	20	deg C		03/24/25 13:40	
	Static Water Level	35.74	feet		03/24/25 13:40	
	Specific Conductance	599	umhos/cm		03/24/25 13:40	
	Total Well Depth	38.78	feet		03/24/25 13:40	
	Turbidity	62	NTU		03/24/25 13:40	
	Odor	slight			03/24/25 13:40	
	Appearance	clear			03/24/25 13:40	
EPA 8260D	1,1-Dichloroethane	1.3	ug/L	1.0	03/28/25 04:11	
EPA 8260D	cis-1,2-Dichloroethene	3.4	ug/L	1.0	03/28/25 04:11	
EPA 8260D	Vinyl chloride	6.1	ug/L	1.0	03/28/25 04:11	
EPA 6020B	Barium	737	ug/L	25.0	04/22/25 10:45	
EPA 6020B	Cobalt	23.4	ug/L	5.0	04/15/25 22:48	
EPA 6020B	Zinc	37.4	ug/L	10.0	04/24/25 12:09	
2787163007	MW-5					
	Performed by	PACE			03/24/25 14:03	
	Collected By	Trey			03/24/25 14:03	
	0 11 1 15 1	Jenkins			00/04/05 44 00	
	Collected Date	032425			03/24/25 14:03	
	Collected Time	1403	0.1.11.1.		03/24/25 14:03	
	pH —	5.6	Std. Units		03/24/25 14:03	
	Temperature	17	deg C		03/24/25 14:03	
	Static Water Level	20.71	feet		03/24/25 14:03	
	Specific Conductance	89	umhos/cm		03/24/25 14:03	
	Total Well Depth	33.81	feet		03/24/25 14:03	
	Turbidity	7.3	NTU		03/24/25 14:03	
	Odor	none	_		03/24/25 14:03	
EPA 8260D	1,1-Dichloroethane	1.6	ug/L	1.0	03/28/25 04:30	
EPA 8260D	cis-1,2-Dichloroethene	2.4	ug/L	1.0	03/28/25 04:30	
EPA 6020B	Barium	92.3	ug/L	5.0	04/15/25 22:57	
2787163008	MW-4R					
	Performed by	PACE			03/24/25 14:26	
	Collected By	Chris Corbin			03/24/25 14:26	
	Collected Date	032425			03/24/25 14:26	
	Collected Time	1426			03/24/25 14:26	
	рН	6.8	Std. Units		03/24/25 14:26	
	Temperature	19	deg C		03/24/25 14:26	
	Static Water Level	30.85	feet		03/24/25 14:26	
	Specific Conductance	873	umhos/cm		03/24/25 14:26	
	Total Well Depth	62.47	feet		03/24/25 14:26	
	Turbidity	2	NTU		03/24/25 14:26	
	Odor	slight	-		03/24/25 14:26	
	Appearance	clear			03/24/25 14:26	
EPA 8260D	Benzene	1.1	ug/L	1.0	03/28/25 08:09	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
2787163008	MW-4R					
EPA 8260D	Chloroethane	1.3	ug/L	1.0	03/28/25 08:09	
PA 8260D	1,1-Dichloroethane	5.1	ug/L	1.0	03/28/25 08:09	
PA 8260D	Vinyl chloride	4.4	ug/L	1.0	03/28/25 08:09	
PA 6020B	Barium	687	ug/L	25.0	04/22/25 10:50	
PA 6020B	Cobalt	9.5	ug/L	5.0	04/15/25 23:06	
2787163009	CANNONS CREEK					
	Performed by	PACE			03/24/25 14:40	
	Collected By	Trey			03/24/25 14:40	
	•	Jenkins				
	Collected Date	032425			03/24/25 14:40	
	Collected Time	1440			03/24/25 14:40	
	рН	6.5	Std. Units		03/24/25 14:40	
	Temperature	16	deg C		03/24/25 14:40	
	Specific Conductance	105	umhos/cm		03/24/25 14:40	
	Turbidity	11.5	NTU		03/24/25 14:40	
	Odor	none			03/24/25 14:40	
	Appearance	clear			03/24/25 14:40	
PA 6020B	Barium	52.6	ug/L	5.0	04/15/25 23:16	
PA 6020B	Zinc	19.7	ug/L	10.0	04/24/25 12:14	
2787163010	TMW-10					
	Performed by	PACE			03/24/25 16:00	
	Collected By	Trey			03/24/25 16:00	
	262027	Jenkins			00/2 1/20 10:00	
	Collected Date	032425			03/24/25 16:00	
	Collected Time	1600			03/24/25 16:00	
	рН	5.7	Std. Units		03/24/25 16:00	
	Temperature	19	deg C		03/24/25 16:00	
	Static Water Level	17.49	feet		03/24/25 16:00	
	Specific Conductance	271	umhos/cm		03/24/25 16:00	
	Total Well Depth	43.88	feet		03/24/25 16:00	
	Turbidity	2.0	NTU		03/24/25 16:00	
	Appearance	clear			03/24/25 16:00	
PA 8260D	Benzene	2.1	ug/L	1.0	04/02/25 16:40	
PA 8260D	1,1-Dichloroethane	9.3	ug/L	1.0	04/02/25 16:40	
PA 8260D	cis-1,2-Dichloroethene	25.6		1.0	04/02/25 16:40	
	,		ug/L			
PA 8260D	Methylene Chloride	12.1	ug/L	5.0	04/02/25 16:40	4
PA 8260D	Tetrachloroethene	1.7	ug/L		04/02/25 16:40	V I
PA 8260D PA 6020B	Trichloroethene Barium	3.2 263	ug/L ug/L		04/02/25 16:40 04/16/25 00:22	
		203	ug/L	3.0	04/10/23 00:22	
2787163011	TMW-9	54.05			00/04/05 40 55	
	Performed by	PACE			03/24/25 16:57	
	Collected By	Trey			03/24/25 16:57	
	Callegted Data	Jenkins			02/24/25 46:57	
	Collected Date	032425			03/24/25 16:57	
	Collected Time	1657	0.1.7.		03/24/25 16:57	
	рН	5.9	Std. Units		03/24/25 16:57	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92787163011	TMW-9					
	Temperature	19	deg C		03/24/25 16:57	
	Static Water Level	46.78	feet		03/24/25 16:57	
	Specific Conductance	708	umhos/cm		03/24/25 16:57	
	Total Well Depth	71.0	feet		03/24/25 16:57	
	Turbidity	1.6	NTU		03/24/25 16:57	
	Odor	slight			03/24/25 16:57	
	Appearance	clear			03/24/25 16:57	
EPA 8260D	Benzene	1.7	ug/L	1.0	03/28/25 07:14	
EPA 8260D	1,1-Dichloroethane	4.3	ug/L	1.0	03/28/25 07:14	
EPA 8260D	cis-1,2-Dichloroethene	10.9	ug/L	1.0	03/28/25 07:14	
EPA 8260D	Vinyl chloride	3.7	ug/L	1.0	03/28/25 07:14	
EPA 6020B	Barium	1120	ug/L	50.0	04/22/25 10:55	
EPA 6020B	Zinc	17.2	ug/L	10.0	04/24/25 12:30	
2790600001	MW-8					
	Performed by	PACE			04/21/25 17:10	
	Collected By	C. Corbin			04/21/25 17:10	
	Collected Date	3/25/25			04/21/25 17:10	
	Collected Time	16:45			04/21/25 17:10	
	рН	5.7	Std. Units		04/21/25 17:10	
	Temperature	19	deg C		04/21/25 17:10	
	Static Water Level	33.63	feet		04/21/25 17:10	
	Specific Conductance	232	umhos/cm		04/21/25 17:10	
	Total Well Depth	71.84	feet		04/21/25 17:10	
	Turbidity	12	NTU		04/21/25 17:10	
EPA 8260D	Benzene	2.4	ug/L	1.0	04/14/25 15:06	
EPA 8260D	1,4-Dichlorobenzene	2.0	ug/L	1.0	04/14/25 15:06	
EPA 8260D	1,1-Dichloroethane	14.3	ug/L	1.0	04/14/25 15:06	
EPA 8260D	1,1-Dichloroethene	1.7	ug/L	1.0	04/14/25 15:06	
EPA 8260D	cis-1,2-Dichloroethene	33.7	ug/L	1.0	04/14/25 15:06	
EPA 8260D	Methylene Chloride	41.5	ug/L	5.0	04/14/25 15:06	
EPA 8260D	Tetrachloroethene	2.4	ug/L	1.0	04/14/25 15:06	
EPA 8260D	Trichloroethene	5.1	ug/L	1.0	04/14/25 15:06	
EPA 8260D	Trichlorofluoromethane	1.4	ug/L	1.0	04/14/25 15:06	
EPA 6020B	Barium	275	ug/L	25.0	04/17/25 14:24	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Lab ID: 92	787163001	Collected: 03/24/2	5 10:49	Received: 03	/26/25 07:30 N	Matrix: Water	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Me	thod: EPA 801	1 Preparation Meth	od: EPA	\ 8011			
Pace Analytic	al Services - 0	Charlotte					
ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 15:58	96-12-8	
ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 15:58	106-93-4	
113	%	60-140	1	04/03/25 12:58	04/03/25 15:58	301-79-56	
Analytical Me	thod:						
Pace Analytic	al Services - 0	Greenwood					
PACE			1		03/27/25 12:21		
Trey			1		03/27/25 12:21		
			1		03/27/25 12:21		
	Std Unite						
	-						
	NIO						
			1				
	thod: FPA 826	60D					
•							
ND	ua/L	25.0	1		03/28/25 02:58	67-64-1	
ND	-	10.0	1		03/28/25 02:58	107-13-1	
	-						
	-						
	-		1				
	-						
	-						
	-						
	-						
	-						
	-						
	-						
	-						v1
	-						VI
	-						
	-						
	-						
	-						
	ug/L ug/L						
	110/1	1.0	1		03/28/25 02:58	75-34-3	
ND	-						
ND ND ND	ug/L ug/L	1.0 1.0	1		03/28/25 02:58 03/28/25 02:58	107-06-2	v1
	Analytical Me Pace Analytic ND ND 113 Analytical Me Pace Analytic PACE Trey Jenkins 032425 1049 5.8 17 34.04 84 60.41 5.1 none clear Analytical Me	Analytical Method: EPA 801 Pace Analytical Services - C ND ug/L ND ug/L 113 % Analytical Method: Pace Analytical Services - C PACE Trey Jenkins 032425 1049 5.8 Std. Units 17 deg C 34.04 feet 84 umhos/cm 60.41 feet 5.1 NTU none clear Analytical Method: EPA 826 Pace Analytical Services - C ND ug/L ND ug/L	Results	Results	Results	Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 8011 Preparation Method: EPA 8011 Pace Analytical Services - Charlotte ND ug/L 0.021 1 04/03/25 12:58 04/03/25 15:58 ND ug/L 0.021 1 04/03/25 12:58 04/03/25 15:58 Analytical Method: Pace Analytical Services - Greenwood PACE 1 03/27/25 12:21 Trey 1 03/27/25 12:21 Jenkins 1 03/27/25 12:21 1049 1 03/27/25 12:21 17 deg C 1 03/27/25 12:21 34.04 feet 1 03/27/25 12:21 34.04 feet 1 03/27/25 12:21 60.41 feet 1 03/27/25 12:21 60.41 feet 1 03/27/25 12:21 none 1 03/27/25 12:21 60.41 feet 1 03/27/25 12:21 Analytical Method: EPA 8260D 1 03/28/25 02:58	Results

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: MW-1R	Lab ID: 927	87163001	Collected: 03/24/2	25 10:49	Received: 03	3/26/25 07:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
B260 MSV Low Level SC	Analytical Meth	nod: EPA 82						
	Pace Analytica							
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 02:58	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 02:58		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 02:58		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 02:58	3 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 02:58		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 02:58	3 591-78-6	
odomethane	ND	ug/L	20.0	1		03/28/25 02:58		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 02:58		v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 02:58		• •
Styrene	ND	ug/L	1.0	1		03/28/25 02:58		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 02:58		
1,1,2,2-Tetrachloroethane	ND ND	ug/L	1.0	1		03/28/25 02:58		
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 02:58		L1,v1
Toluene	ND ND	•	1.0	1		03/28/25 02:58		LI,VI
		ug/L		1		03/28/25 02:58		
,1,1-Trichloroethane	ND	ug/L	1.0					
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 02:58		
Trichloroethene	ND	ug/L	1.0	1		03/28/25 02:58		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 02:58		
I,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 02:58		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 02:58		
/inyl chloride	ND	ug/L	1.0	1		03/28/25 02:58		
(ylene (Total)	ND	ug/L	1.0	1		03/28/25 02:58		
n&p-Xylene	ND	ug/L	2.0	1			3 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/25 02:58	3 95-47-6	
Surrogates	0.5	0.4	70.400			00/00/05 00 50		
4-Bromofluorobenzene (S)	95	%	70-130	1		03/28/25 02:58		
I,2-Dichloroethane-d4 (S)	108	%	70-130	1		03/28/25 02:58		
Toluene-d8 (S)	102	%	70-130	1		03/28/25 02:58	3 2037-26-5	
WC 6020B MET ICPMS	Analytical Meth	hod: EPA 60	020B Preparation Me	ethod: EF	PA 3005A			
	Pace Analytica	l Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/15/25 21:41	7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 21:41	7440-38-2	
Barium	144	ug/L	5.0	1	04/14/25 08:33	04/15/25 21:41	7440-39-3	
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33	04/15/25 21:41	I 7440-41-7	
Cadmium	ND	ug/L	1.0	1		04/15/25 21:41		
Chromium	ND	ug/L	5.0	1	04/14/25 08:33	04/15/25 21:41	7440-47-3	
Cobalt	ND	ug/L	5.0	1		04/15/25 21:41		
Copper	ND	ug/L	5.0	1		04/15/25 21:41		
_ead	ND	ug/L	5.0	1		04/15/25 21:41		
Nickel	ND ND	ug/L	5.0	1		04/15/25 21:41		
Selenium	ND	ug/L	10.0	1		04/15/25 21:41		
Silver	ND ND	ug/L	5.0	1		04/15/25 21:41		
Thallium	ND ND	ug/L ug/L	0.50	1		04/15/25 21:41		
		•				04/15/25 21:41		
Vanadium Vanadium	ND	ug/L	5.0	1				

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-7R	Lab ID: 92	787163002	Collected: 03/24/2	5 11:38	Received: 03	/26/25 07:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 801	I1 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytic	al Services - 0	Charlotte					
1,2-Dibromo-3-chloropropane	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 16:20	96-12-8	
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 16:20	106-93-4	
I-Chloro-2-bromopropane (S)	99	%	60-140	1	04/03/25 12:58	04/03/25 16:20	301-79-56	
Monitoring Well Data, Greenwood	Analytical Me	thod:						
	Pace Analytic	al Services - 0	Greenwood					
Performed by	PACE			1		03/24/25 11:38		
Collected By	Chris Corbin			1		03/24/25 11:38		
Collected Date	032425			1		03/24/25 11:38		
Collected Time	1138			1		03/24/25 11:38		
ρΗ	6.0	Std. Units		1		03/24/25 11:38		
Temperature	17	deg C		1		03/24/25 11:38	1	
Static Water Level	33.40	feet		1		03/24/25 11:38		
Specific Conductance	126	umhos/cm		1		03/24/25 11:38	1	
otal Well Depth	60.41	feet		1		03/24/25 11:38	1	
- urbidity	< 1	NTU		1		03/24/25 11:38	1	
Odor	slight			1		03/24/25 11:38	1	
Appearance	clear			1		03/24/25 11:38		
3260 MSV Low Level SC	Analytical Me	thod: EPA 826	80D					
	Pace Analytic	al Services - 0	Charlotte					
Acetone	ND	ug/L	25.0	1		03/28/25 03:16	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 03:16	107-13-1	
Benzene	ND	ug/L	1.0	1		03/28/25 03:16	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 03:16	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 03:16	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/25 03:16	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/28/25 03:16	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 03:16	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 03:16	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 03:16	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 03:16	108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/28/25 03:16	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/28/25 03:16	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/28/25 03:16	74-87-3	v1
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 03:16	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		03/28/25 03:16	74-95-3	
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 03:16	95-50-1	
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 03:16	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 03:16	110-57-6	
,1-Dichloroethane	ND	ug/L	1.0	1		03/28/25 03:16	75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 03:16	107-06-2	
,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:16		v1
cis-1.2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:16		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-7R	Lab ID: 927	87163002	Collected: 03/24/2	25 11:38	Received: 0	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level SC	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:1	6 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 03:1	6 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 03:1	6 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 03:1	6 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 03:1	6 100-41-4	
2-Hexanone	ND	ug/L	5.0	1		03/28/25 03:1	6 591-78-6	
odomethane	ND	ug/L	20.0	1		03/28/25 03:1		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 03:1		v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 03:1		
Styrene	ND	ug/L	1.0	1		03/28/25 03:1		
I,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 03:1		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 03:1		
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 03:1		L1,v1
Toluene	ND	ug/L	1.0	1		03/28/25 03:1		,
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 03:1		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 03:1		
Frichloroethene	ND	ug/L	1.0	1		03/28/25 03:1		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 03:1		
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 03:1		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 03:10		
/inyl decidic /inyl chloride	ND	ug/L	1.0	1		03/28/25 03:10		
Kylene (Total)	ND ND	ug/L	1.0	1		03/28/25 03:10		
m&p-Xylene	ND	ug/L	2.0	1			6 179601-23-1	
o-Xylene	ND ND	ug/L	1.0	1		03/28/25 03:10		
Surrogates	ND	ug/L	1.0	'		03/20/23 03.1	33-47-0	
I-Bromofluorobenzene (S)	96	%	70-130	1		03/28/25 03:1	6 460-00-4	
I,2-Dichloroethane-d4 (S)	110	%	70-130	1		03/28/25 03:1		
Foluene-d8 (S)	103	%	70-130	1		03/28/25 03:1		
NC 6020B MET ICPMS	Analytical Met	hod: FPA 60	20B Preparation Me	thod: FF	Δ 3005Δ			
TO OUZOD MIET TOT MIO			West Columbia	Allou. El	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	3 04/15/25 22:10	0 7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 22:1	7440-38-2	
Barium	118	ug/L	5.0	1		04/15/25 22:1		
Beryllium	ND	ug/L	1.0	1		04/15/25 22:1		
Cadmium	1.6	ug/L	1.0	1		04/15/25 22:1		
Chromium	ND	ug/L	5.0	1		04/15/25 22:1		
Cobalt	ND	ug/L	5.0	1		04/15/25 22:1		
Copper	ND	ug/L	5.0	1		04/15/25 22:1		
ead.	ND	ug/L	5.0	1		04/15/25 22:10		
Vickel	ND	ug/L	5.0	1		04/15/25 22:10		
Selenium	ND	ug/L	10.0	1		04/15/25 22:10		
Silver	ND	ug/L	5.0	1		3 04/15/25 22:10 3 04/15/25 22:10		
	ND	ug/L	5.0		U-1/1 1-1/2U UU.UU	, 07/10/20 22.19	0 1770-22-4	
	ND	ua/l	0.50	1	04/14/25 00:22	04/15/25 22:4	7//0.29 0	
Гhallium /anadium	ND ND	ug/L ug/L	0.50 5.0	1 1		3 04/15/25 22:10 3 04/15/25 22:10		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-6	Lab ID: 92	787163003	Collected: 03/24/2	5 12:17	Received: 03	/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 801	I1 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytic	al Services - 0	Charlotte					
1,2-Dibromo-3-chloropropane	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 16:55	96-12-8	
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 16:55	106-93-4	
-Chloro-2-bromopropane (S)	121	%	60-140	1	04/03/25 12:58	04/03/25 16:55	301-79-56	
Monitoring Well Data, Greenwood	Analytical Me	thod:						
	Pace Analytic	al Services - 0	Greenwood					
Performed by	PACE			1		03/24/25 12:17	,	
Collected By	Chris			1		03/24/25 12:17	,	
Callanta d Data	Corbin			4		00/04/05 40:45	•	
Collected Date	032425			1		03/24/25 12:17		
Collected Time	1217	Ord Hair		1		03/24/25 12:17		
DH	6.2	Std. Units		1		03/24/25 12:17		
Temperature	18	deg C		1		03/24/25 12:17		
Static Water Level	22.18	feet		1		03/24/25 12:17		
Specific Conductance	610	umhos/cm		1		03/24/25 12:17		
Total Well Depth	27.25	feet		1		03/24/25 12:17		
Turbidity		NTU		1		03/24/25 12:17		
Odor	slight			1		03/24/25 12:17		
Appearance	clear			1		03/24/25 12:17	7	
3260 MSV Low Level SC	Analytical Me							
	Pace Analytic	al Services - 0	Charlotte					
Acetone	ND	ug/L	25.0	1		03/28/25 03:35	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 03:35	107-13-1	
Benzene	2.3	ug/L	1.0	1		03/28/25 03:35	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 03:35	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 03:35	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/25 03:35	75-25-2	IK
Bromomethane	ND	ug/L	2.0	1		03/28/25 03:35	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 03:35	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 03:35	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 03:35	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 03:35	108-90-7	
Chloroethane	2.1	ug/L	1.0	1		03/28/25 03:35	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/28/25 03:35	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/28/25 03:35	74-87-3	v1
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 03:35	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		03/28/25 03:35	74-95-3	
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 03:35		
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 03:35		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 03:35		
1,1-Dichloroethane	ND	ug/L	1.0	1		03/28/25 03:35		
1,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 03:35		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:35		v1
.,	140	~g/ L	1.0			33,23,20 00.00	, , , , , , , ,	• •

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: MW-6	Lab ID: 927	87163003	Collected: 03/24/2	25 12:17	Received: 03	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV Low Level SC	Analytical Met							
	Pace Analytica	I Services -	Charlotte					
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:35	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 03:35	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 03:35	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 03:35	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 03:35	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		03/28/25 03:35	591-78-6	
odomethane	ND	ug/L	20.0	1		03/28/25 03:35	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 03:35	75-09-2	v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 03:35	108-10-1	
Styrene	ND	ug/L	1.0	1		03/28/25 03:35	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 03:35	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 03:35		
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 03:35	127-18-4	L1,v1
Toluene	ND	ug/L	1.0	1		03/28/25 03:35		,
I,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 03:35		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 03:35		
richloroethene	ND	ug/L	1.0	1		03/28/25 03:35		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 03:35		
,2,3-Trichloropropane	ND ND	ug/L	1.0	1		03/28/25 03:35		
· ·	ND ND	•	2.0	1		03/28/25 03:35		
/inyl acetate		ug/L		1				
/inyl chloride	ND	ug/L	1.0	1		03/28/25 03:35		
(ylene (Total)	ND	ug/L	1.0			03/28/25 03:35		
m&p-Xylene	ND	ug/L	2.0	1		03/28/25 03:35		
o-Xylene	ND	ug/L	1.0	1		03/28/25 03:35	95-47-6	
Surrogates 4-Bromofluorobenzene (S)	96	%	70-130	1		03/28/25 03:35	. 460 00 4	
` ,	111	%	70-130	1		03/28/25 03:35		
I,2-Dichloroethane-d4 (S)	103	%	70-130	1		03/28/25 03:35		
Toluene-d8 (S)	103	70	70-130	ı		03/20/23 03.33	2037-20-3	
WC 6020B MET ICPMS	Analytical Met	hod: EPA 60	20B Preparation Me	thod: EF	PA 3005A			
	Pace Analytica	al Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/15/25 22:19	7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 22:19	7440-38-2	
Barium	392	ug/L	5.0	1	04/14/25 08:33	04/22/25 10:35	7440-39-3	
Beryllium	ND	ug/L	1.0	1		04/15/25 22:19		
Cadmium	ND	ug/L	1.0	1		04/15/25 22:19		
Chromium	ND	ug/L	5.0	1		04/15/25 22:19		
Cobalt	26.0	ug/L	5.0	1		04/15/25 22:19		
Copper	ND	ug/L	5.0	1		04/15/25 22:19		
-ead	ND	ug/L	5.0	1		04/15/25 22:19		
Vickel	ND ND	ug/L ug/L	5.0	1		04/15/25 22:19		
Selenium	ND ND		10.0	1		04/15/25 22:19		
Silver	ND ND	ug/L	5.0	1		04/15/25 22:19		
		ug/L						
Thallium /anadium	ND	ug/L	0.50	1		04/15/25 22:19		
Vanadium	ND	ug/L	5.0	1		04/15/25 22:19		
Zinc	11.0	ug/L	10.0	1	04/14/25 08:33	04/24/25 11:59	7440-66-6	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: TMW-11	Lab ID: 92	787163004	Collected: 03/24/2	25 12:49	Received: 03	3/26/25 07:30 I	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 80°	11 Preparation Meth	nod: EPA	\ 8011				
	Pace Analytic	al Services - 0	Charlotte						
1,2-Dibromo-3-chloropropane	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:06	96-12-8		
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:06	106-93-4		
1-Chloro-2-bromopropane (S)	113	%	60-140	1	04/03/25 12:58	04/03/25 17:06	301-79-56		
Monitoring Well Data,Greenwood	Analytical Method:								
	Pace Analytic	al Services - 0	Greenwood						
Performed by	PACE			1		03/24/25 12:49)		
Collected By	Trey			1		03/24/25 12:49)		
Collected Date	Jenkins 032425			1		03/24/25 12:49	a		
Collected Time	1249			1		03/24/25 12:49			
oH	5.2	Std. Units		1		03/24/25 12:49			
remperature	17	deg C		1		03/24/25 12:49			
Static Water Level	21.76	feet		1		03/24/25 12:49			
Specific Conductance	69	umhos/cm		1		03/24/25 12:49			
Total Well Depth	30.76	feet		1		03/24/25 12:49			
Furbidity	1.8	NTU		1		03/24/25 12:49			
Odor	none			1		03/24/25 12:49)		
Appearance	clear			1		03/24/25 12:49)		
8260 MSV Low Level SC	Analytical Me	thod: EPA 826	60D						
	Pace Analytic	al Services - 0	Charlotte						
Acetone	ND	ug/L	25.0	1		03/28/25 03:53	8 67-64-1		
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 03:53	3 107-13-1		
Benzene	ND	ug/L	1.0	1		03/28/25 03:53	3 71-43-2		
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 03:53	3 74-97-5		
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 03:53	3 75-27-4		
3romoform Stromoform S	ND	ug/L	1.0	1		03/28/25 03:53	3 75-25-2	IK	
Bromomethane	ND	ug/L	2.0	1		03/28/25 03:53	3 74-83-9		
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 03:53	78-93-3		
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 03:53	3 75-15-0		
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 03:53	3 56-23-5		
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 03:53	3 108-90-7		
Chloroethane	ND	ug/L	1.0	1		03/28/25 03:53	3 75-00-3		
Chloroform	ND	ug/L	1.0	1		03/28/25 03:53	8 67-66-3		
Chloromethane	ND	ug/L	1.0	1		03/28/25 03:53	3 74-87-3	v1	
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 03:53	3 124-48-1		
Dibromomethane	ND	ug/L	1.0	1		03/28/25 03:53			
1,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 03:53	95-50-1		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 03:53	3 106-46-7		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 03:53	3 110-57-6		
1,1-Dichloroethane	ND	ug/L	1.0	1		03/28/25 03:53	75-34-3		
1,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 03:53	3 107-06-2		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:53	3 75-35-4	v1	
cis-1.2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:53	3 156-59-2		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: TMW-11	Lab ID: 927	87163004	Collected: 03/24/2	25 12:49	Received: 0	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level SC	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 03:5	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 03:5	3 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 03:5	3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 03:5	3 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 03:5	3 100-41-4	
2-Hexanone	ND	ug/L	5.0	1		03/28/25 03:5	3 591-78-6	
odomethane	ND	ug/L	20.0	1		03/28/25 03:5		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 03:5		v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 03:5		
Styrene	ND	ug/L	1.0	1		03/28/25 03:5		
I,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 03:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 03:5		
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 03:5		L1,v1
Toluene	ND	ug/L	1.0	1		03/28/25 03:5		,
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 03:5		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 03:5		
Frichloroethene	ND	ug/L	1.0	1		03/28/25 03:5		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 03:5		
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 03:5		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 03:5		
/inyl chloride	ND	ug/L	1.0	1		03/28/25 03:5		
Kylene (Total)	ND ND	ug/L	1.0	1		03/28/25 03:5		
n&p-Xylene	ND	ug/L	2.0	1			3 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/25 03:5		
Surrogates	ND	ug/L	1.0	'		03/20/23 03.3	3 93-47-0	
4-Bromofluorobenzene (S)	96	%	70-130	1		03/28/25 03:5	3 460-00-4	
I,2-Dichloroethane-d4 (S)	109	%	70-130	1			3 17060-07-0	
Foluene-d8 (S)	102	%	70-130	1		03/28/25 03:5		
NC 6020B MET ICPMS	Analytical Met	nod: EPA 60)20B Preparation Me	thod: EP	A 3005A			
	Pace Analytica	l Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	3 04/15/25 22:2	9 7440-36-0	
Arsenic	ND	ug/L	10.0		04/14/25 08:33	3 04/15/25 22:2	9 7440-38-2	
Barium	78.6	ug/L	5.0	1	04/14/25 08:33	3 04/15/25 22:2	9 7440-39-3	
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33	3 04/15/25 22:2	9 7440-41-7	
Cadmium	ND	ug/L	1.0			3 04/15/25 22:2		
Chromium	ND	ug/L	5.0			3 04/15/25 22:2		
Cobalt	ND	ug/L	5.0			3 04/15/25 22:2		
Copper	ND	ug/L	5.0			3 04/15/25 22:2		
_ead	ND	ug/L	5.0			3 04/15/25 22:2		
Nickel	ND	ug/L	5.0			3 04/15/25 22:2		
Selenium	ND	ug/L	10.0			3 04/15/25 22:2		
Silver	ND	ug/L	5.0			3 04/15/25 22:2		
Fhallium	ND	ug/L	0.50			3 04/15/25 22:2		
/anadium	ND ND	ug/L	5.0			3 04/15/25 22:29 3 04/15/25 22:29		
Zinc	ND ND	ug/L ug/L	10.0			3 04/15/25 22:29 3 04/15/25 22:29		1g

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-2RR	Lab ID: 92	2787163005	Collected: 03/24/2	25 13:01	Received: 03	/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Me	ethod: EPA 80°	11 Preparation Met	hod: EPA	A 8011			
	Pace Analyti	cal Services -	Charlotte					
1,2-Dibromo-3-chloropropane	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:1	7 96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:1	7 106-93-4	
Surrogates		-						
1-Chloro-2-bromopropane (S)	93	%	60-140	1	04/03/25 12:58	04/03/25 17:1	7 301-79-56	
Monitoring Well Data,Greenwood	Analytical Me	ethod:						
	Pace Analyti	cal Services -	Greenwood					
Performed by	PACE			1		03/24/25 13:0	1	
Collected By	Chris			1		03/24/25 13:0	1	
	Corbin							
Collected Date	032425			1		03/24/25 13:0		
Collected Time	1301	0.1.1.		1		03/24/25 13:0		
о Н -	6.5	Std. Units		1		03/24/25 13:0		
Temperature	19	deg C		1		03/24/25 13:0		
Static Water Level	37.41	feet		1		03/24/25 13:0		
Specific Conductance	1698	umhos/cm		1		03/24/25 13:0		
Total Well Depth	59.98	feet		1		03/24/25 13:0		
Turbidity	8	NTU		1		03/24/25 13:0		
Odor	strong			1		03/24/25 13:0		
Appearance	clear			1		03/24/25 13:0	1	
8260 MSV Low Level SC	Analytical Me	ethod: EPA 826	60D					
	Pace Analyti	cal Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		03/28/25 07:3	2 67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 07:3	2 107-13-1	
Benzene	4.7	ug/L	1.0	1		03/28/25 07:3	2 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 07:3	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 07:3	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/25 07:3	2 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/28/25 07:3	2 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 07:3	2 78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 07:3	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 07:3	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 07:3	2 108-90-7	
Chloroethane	1.4	ug/L	1.0	1		03/28/25 07:3	2 75-00-3	
Chloroform	ND	ug/L	1.0	1		03/28/25 07:3	2 67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/28/25 07:3		v1
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 07:3	_	
Dibromomethane	ND	ug/L	1.0	1		03/28/25 07:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 07:3		
1,4-Dichlorobenzene	24.3	ug/L	1.0	1		03/28/25 07:3		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 07:3		
1,1-Dichloroethane	4.1	ug/L	1.0	1		03/28/25 07:3		
1,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 07:3		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 07:3		v1
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 07:3	2 156-59-2	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: MW-2RR	Lab ID: 927	87163005	Collected: 03/24/2	25 13:01	Received: 03	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 07:32	2 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 07:32		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 07:32		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 07:32		
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 07:32		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 07:32		
odomethane	ND	ug/L	20.0	1		03/28/25 07:32		
Methylene Chloride	ND ND	ug/L	5.0	1		03/28/25 07:32		v1
•	ND ND	•	5.0	1		03/28/25 07:32		V I
4-Methyl-2-pentanone (MIBK)		ug/L						
Styrene	ND	ug/L	1.0	1		03/28/25 07:32		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 07:32		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 07:32		
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 07:32		L1,v1
Toluene	1.8	ug/L	1.0	1		03/28/25 07:32		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 07:32		
I,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 07:32		
Trichloroethene	ND	ug/L	1.0	1		03/28/25 07:32	2 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 07:32	2 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 07:32	2 96-18-4	
/inyl acetate	ND	ug/L	2.0	1		03/28/25 07:32	2 108-05-4	
Vinyl chloride	14.5	ug/L	1.0	1		03/28/25 07:32	2 75-01-4	
(Ylene (Total)	ND	ug/L	1.0	1		03/28/25 07:32	2 1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		03/28/25 07:32	2 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/25 07:32	2 95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	95	%	70-130	1		03/28/25 07:32	2 460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130	1		03/28/25 07:32	2 17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		03/28/25 07:32	2 2037-26-5	
WC 6020B MET ICPMS	Analytical Met	hod: EPA 60	020B Preparation Me	ethod: E	PA 3005A			
	Pace Analytica	al Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/15/25 22:38	3 7440-36-0	
Arsenic	ND	ug/L	10.0	1		04/15/25 22:38		
Barium	2990	ug/L	50.0	10		04/22/25 10:40		
Beryllium	ND	ug/L	1.0	1		04/15/25 22:38		
Cadmium	2.7	ug/L	1.0	1		04/15/25 22:38		
Chromium	ND	ug/L	5.0	1		04/15/25 22:38		
Cobalt	12.8	ug/L	5.0	1		04/15/25 22:38		
Copper	ND	ug/L	5.0	1		04/15/25 22:38		
_ead	ND ND	-	5.0	1		04/15/25 22:38		
Lead Nickel	ND ND	ug/L	5.0	1				
		ug/L				04/15/25 22:38		
Selenium	ND	ug/L	10.0	1		04/15/25 22:38		
Silver	ND	ug/L	5.0	1		04/15/25 22:38		
Γhallium 	ND	ug/L	0.50	1		04/15/25 22:38		
Vanadium 	ND	ug/L	5.0	1		04/15/25 22:38		
Zinc	51.0	ug/L	10.0	1	04/14/25 08:33	04/24/25 12:04	7440-66-6	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-3	Lab ID: 92	787163006	Collected: 03/24/2	25 13:40	Received: 03	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 801	I1 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytic	al Services - 0	Charlotte					
1,2-Dibromo-3-chloropropane	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:29	96-12-8	
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:29	9 106-93-4	
1-Chloro-2-bromopropane (S)	107	%	60-140	1	04/03/25 12:58	04/03/25 17:29	301-79-56	
Monitoring Well Data,Greenwood	Analytical Me	thod:						
	Pace Analytic	al Services - 0	Greenwood					
Performed by	PACE			1		03/24/25 13:40)	
Collected By	Chris			1		03/24/25 13:40)	
Collected Data	Corbins 032425			4		02/24/25 12:40	1	
Collected Date Collected Time	1340			1 1		03/24/25 13:40 03/24/25 13:40		
pH	6.4	Std. Units		1		03/24/25 13:40		
	20			1		03/24/25 13:40		
Temperature Static Water Level	35.74	deg C		1		03/24/25 13:40		
		feet						
Specific Conductance	599	umhos/cm		1		03/24/25 13:40		
Total Well Depth	38.78	feet NTU		1		03/24/25 13:40		
Turbidity	62	NIO		1		03/24/25 13:40		
Odor	slight			1 1		03/24/25 13:40 03/24/25 13:40		
Appearance	clear			'		03/24/25 13.40)	
8260 MSV Low Level SC	Analytical Me							
	Pace Analytic							
Acetone	ND	ug/L	25.0	1		03/28/25 04:11		
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 04:11		
Benzene	ND	ug/L	1.0	1		03/28/25 04:11		
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 04:11		
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 04:11		
Bromoform	ND	ug/L	1.0	1		03/28/25 04:11		
Bromomethane	ND	ug/L	2.0	1		03/28/25 04:11		
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 04:11	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 04:11	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 04:11	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 04:11		
Chloroethane	ND	ug/L	1.0	1		03/28/25 04:11	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/28/25 04:11	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/28/25 04:11	74-87-3	v1
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 04:11	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		03/28/25 04:11	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 04:11	95-50-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 04:11	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 04:11	110-57-6	
1,1-Dichloroethane	1.3	ug/L	1.0	1		03/28/25 04:11	75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 04:11		
1.1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 04:11		v1
,	3.4	ug/L	1.0	1		03/28/25 04:11		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: MW-3	Lab ID: 927	87163006	Collected: 03/24/2	5 13:40	Received: 03	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV Low Level SC	Analytical Metl	hod: FPA 82			,			
2200 11101 2011 2010 00	Pace Analytica							
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 04:11	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 04:11	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 04:11	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 04:11		
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 04:11		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 04:11		
odomethane	ND	ug/L	20.0	1		03/28/25 04:11		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 04:11		v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 04:11		• •
Styrene (M.B.t.)	ND	ug/L	1.0	1		03/28/25 04:11		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 04:11		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0	1		03/28/25 04:11		
Tetrachloroethene	ND ND	•	1.0	1		03/28/25 04:11		L1,v1
		ug/L						LI,VI
Toluene	ND	ug/L	1.0	1		03/28/25 04:11		
I,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 04:11		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 04:11		
Trichloroethene	ND	ug/L	1.0	1		03/28/25 04:11		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 04:11		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 04:11		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 04:11		
/inyl chloride	6.1	ug/L	1.0	1		03/28/25 04:11	75-01-4	
(Yotal)	ND	ug/L	1.0	1		03/28/25 04:11	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		03/28/25 04:11	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/25 04:11	95-47-6	
Surrogates								
1-Bromofluorobenzene (S)	95	%	70-130	1		03/28/25 04:11		
I,2-Dichloroethane-d4 (S)	110	%	70-130	1		03/28/25 04:11	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		03/28/25 04:11	2037-26-5	
NC 6020B MET ICPMS	Analytical Met	hod: EPA 60	20B Preparation Me	thod: EF	PA 3005A			
	Pace Analytica	al Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/15/25 22:48	3 7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 22:48	3 7440-38-2	
Barium	737	ug/L	25.0	5	04/14/25 08:33	04/22/25 10:45	7440-39-3	
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33	04/15/25 22:48	3 7440-41-7	
Cadmium	ND	ug/L	1.0	1		04/15/25 22:48		
Chromium	ND	ug/L	5.0	1		04/15/25 22:48		
Cobalt	23.4	ug/L	5.0	1		04/15/25 22:48		
Copper	ND	ug/L	5.0	1		04/15/25 22:48		
-ead	ND ND	ug/L ug/L	5.0	1		04/15/25 22:48		
Vickel	ND ND	ug/L ug/L	5.0	1		04/15/25 22:48		
Selenium	ND ND		10.0	1		04/15/25 22:48		
		ug/L						
Silver	ND	ug/L	5.0	1		04/15/25 22:48		
Γhallium 'a cast' acc	ND	ug/L	0.50	1		04/15/25 22:48		
Vanadium	ND	ug/L	5.0	1		04/15/25 22:48		
Zinc	37.4	ug/L	10.0	1	04/14/25 08:33	04/24/25 12:09	7440-66-6	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Lab ID: 92	787163007	Collected: 03/24/2	5 14:03	Received: 03	/26/25 07:30	Matrix: Water	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Me	thod: EPA 80°	11 Preparation Meth	od: EPA	x 8011			
Pace Analytic	cal Services -	Charlotte					
ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:40	96-12-8	
ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 17:40	106-93-4	
117	%	60-140	1	04/03/25 12:58	04/03/25 17:40	301-79-56	
Analytical Me	thod:						
Pace Analytic	cal Services -	Greenwood					
PACE			1		03/24/25 14:03	3	
Trey			1		03/24/25 14:03	3	
			4		00/04/05 44:00	,	
			-				
	Ctd I Inita		-				
			•				
	_		•				
			-				
			-				
_	1110						
none			•		03/24/23 14.00	,	
•							
Pace Analytic	cal Services -	Charlotte					
ND	ug/L	25.0	1		03/28/25 04:30	67-64-1	
ND	ug/L	10.0	1		03/28/25 04:30	107-13-1	
ND	ug/L	1.0	1		03/28/25 04:30	71-43-2	
ND	ug/L	1.0	1		03/28/25 04:30	74-97-5	
ND	ug/L	1.0	1		03/28/25 04:30	75-27-4	
ND	ug/L	1.0	1		03/28/25 04:30	75-25-2	
ND	ug/L	2.0	1		03/28/25 04:30	74-83-9	
ND	ug/L	5.0	1		03/28/25 04:30	78-93-3	
ND	ug/L	2.0	1		03/28/25 04:30	75-15-0	
ND	ug/L	1.0	1		03/28/25 04:30	56-23-5	
ND	ug/L	1.0	1		03/28/25 04:30	108-90-7	
ND	ug/L	1.0	1				
	ug/L	1.0	1		03/28/25 04:30	67-66-3	
	-	1.0	1				v1
	-						
	-						
	-						
	-						
	-						
1.6	ug/L	1.0	1		03/28/25 04:30		
ND	ug/L	1.0	1		03/28/25 04:30		
	ug/L ug/L ug/L	1.0 1.0 1.0	1 1 1		03/28/25 04:30 03/28/25 04:30 03/28/25 04:30	75-35-4	v1
	Results Analytical Me Pace Analytic ND ND 117 Analytical Me Pace Analytic PACE Trey Jenkins 032425 1403 5.6 17 20.71 89 33.81 7.3 none Analytical Me Pace Analytic ND	Analytical Method: EPA 80° Pace Analytical Services - 10° ND ug/L ND ug/L 117 % Analytical Method: Pace Analytical Services - 10° PACE Trey Jenkins 032425 1403 5.6 Std. Units 17 deg C 20.71 feet 89 umhos/cm 33.81 feet 7.3 NTU none Analytical Method: EPA 820° Pace Analytical Services - 10° ND ug/L	Results	Results	Results	Results	Results

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-5	Lab ID: 927	87163007	Collected: 03/24/2	25 14:03	Received: 0	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV Low Level SC	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 04:30	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 04:30		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 04:30		
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 04:30		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 04:30		
odomethane	ND	ug/L	20.0	1		03/28/25 04:30		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 04:30		v1
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 04:30		
Styrene	ND	ug/L	1.0	1		03/28/25 04:30		
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 04:30		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 04:30		
etrachloroethene	ND	ug/L	1.0	1		03/28/25 04:30		L1,v1
Toluene	ND	ug/L	1.0	1		03/28/25 04:30	_	,
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 04:30		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 04:30		
richloroethene	ND	ug/L	1.0	1		03/28/25 04:30		
richlorofluoromethane	ND ND	ug/L	1.0	1		03/28/25 04:30		
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 04:30		
/inyl acetate	ND ND	ug/L ug/L	2.0	1		03/28/25 04:30		
/inyl acetate /inyl chloride	ND ND	ug/L	1.0	1		03/28/25 04:30		
,	ND ND		1.0	1		03/28/25 04:30		
(ylene (Total)	ND ND	ug/L	2.0	1) 1330-20-7) 179601-23-1	
n&p-Xylene	ND ND	ug/L	1.0	1		03/28/25 04:30		
o-Xylene Surrogates	ND	ug/L	1.0	1		03/26/23 04.30	95-47-6	
4-Bromofluorobenzene (S)	93	%	70-130	1		03/28/25 04:30	1 460-00-4	
,2-Dichloroethane-d4 (S)	110	%	70-130	1		03/28/25 04:30		
Foluene-d8 (S)	102	%	70-130	1		03/28/25 04:30		
NC 6020B MET ICPMS			020B Preparation Me		νΔ 3005Δ			
VC 0020B MET ICI MG			· West Columbia	,tilou. Li	A 3003A			
antimony	ND	ug/L	2.0	1	04/14/25 08:33	3 04/15/25 22:57	7 7440-36-0	
Arsenic	ND	ug/L	10.0	1		04/15/25 22:57		
Barium	92.3	ug/L	5.0	1		3 04/15/25 22:57		
Beryllium	ND	ug/L	1.0	1		04/15/25 22:57		
Cadmium	ND	ug/L	1.0	1		3 04/15/25 22:57		
Chromium	ND	ug/L	5.0	1		3 04/15/25 22:57		
Cobalt	ND	ug/L	5.0	1		3 04/15/25 22:57		
Copper	ND	ug/L	5.0	1		3 04/15/25 22:57		
ead	ND ND	ug/L ug/L	5.0	1		3 04/15/25 22:57 3 04/15/25 22:57		
lickel	ND ND	-	5.0	1		3 04/15/25 22:57 3 04/15/25 22:57		
Nickei Selenium	ND ND	ug/L	10.0	1		3 04/15/25 22:57 3 04/15/25 22:57		
Silver		ug/L		1				
	ND	ug/L	5.0			04/15/25 22:57		
hallium /anadium	ND	ug/L	0.50	1		04/15/25 22:57		
/anadium	ND	ug/L	5.0	1		04/15/25 22:57		4
Zinc	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 22:57	7440-66-6	1g

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-4R	Lab ID: 92	787163008	Collected: 03/24/2	25 14:26	Received: 03	3/26/25 07:30 I	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 80°	11 Preparation Meth	nod: EPA	A 8011				
	Pace Analytic	al Services - 0	Charlotte						
1,2-Dibromo-3-chloropropane	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 17:52	96-12-8		
1,2-Dibromoethane (EDB)	ND	ug/L	0.022	1		04/03/25 17:52			
Surrogates		-							
1-Chloro-2-bromopropane (S)	113	%	60-140	1	04/03/25 12:58	04/03/25 17:52	301-79-56		
Monitoring Well Data,Greenwood	Analytical Me	Analytical Method:							
,	Pace Analytic	Pace Analytical Services - Greenwood							
Performed by	PACE			1		03/24/25 14:26	3		
Collected By	Chris			1		03/24/25 14:26			
	Corbin			-					
Collected Date	032425			1		03/24/25 14:26	3		
Collected Time	1426			1		03/24/25 14:26	5		
Н	6.8	Std. Units		1		03/24/25 14:26	5		
Temperature	19	deg C		1		03/24/25 14:26	5		
Static Water Level	30.85	feet		1		03/24/25 14:26	5		
Specific Conductance	873	umhos/cm		1		03/24/25 14:26	5		
otal Well Depth	62.47	feet		1		03/24/25 14:26	5		
Turbidity Turbidity	2	NTU		1		03/24/25 14:26	5		
Odor	slight			1		03/24/25 14:26	5		
Appearance	clear			1		03/24/25 14:26	5		
3260 MSV Low Level SC	Analytical Me	thod: EPA 826	60D						
	Pace Analytic	al Services - 0	Charlotte						
Acetone	ND	ug/L	25.0	1		03/28/25 08:09	67-64-1		
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 08:09	107-13-1		
Benzene	1.1	ug/L	1.0	1		03/28/25 08:09	71-43-2		
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 08:09	74-97-5		
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 08:09	75-27-4		
Bromoform	ND	ug/L	1.0	1		03/28/25 08:09	75-25-2		
Bromomethane	ND	ug/L	2.0	1		03/28/25 08:09	74-83-9		
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 08:09	78-93-3		
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 08:09	75-15-0		
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 08:09	56-23-5		
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 08:09	108-90-7		
Chloroethane	1.3	ug/L	1.0	1		03/28/25 08:09	75-00-3		
Chloroform	ND	ug/L	1.0	1		03/28/25 08:09	67-66-3		
Chloromethane	ND	ug/L	1.0	1		03/28/25 08:09	74-87-3	v1	
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 08:09	124-48-1		
Dibromomethane	ND	ug/L	1.0	1		03/28/25 08:09	74-95-3		
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 08:09	95-50-1		
I,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 08:09	106-46-7		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 08:09			
,1-Dichloroethane	5.1	ug/L	1.0	1		03/28/25 08:09	75-34-3		
,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 08:09	107-06-2		
,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 08:09	75-35-4	v1	
cis-1.2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 08:09	156-59-2		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: MW-4R	Lab ID: 927	87163008	Collected: 03/24/2	5 14:26	Received: 03	3/26/25 07:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV Low Level SC	Analytical Meth	hod: EPA 82						
	Pace Analytica	l Services -	Charlotte					
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 08:09	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 08:09		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 08:09		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 08:09		
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 08:09		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 08:09		
odomethane	ND	ug/L	20.0	1		03/28/25 08:09		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 08:09		v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 08:09		• •
Styrene (Miller)	ND	ug/L	1.0	1		03/28/25 08:09		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 08:09		
1,1,2,2-Tetrachloroethane	ND ND	ug/L	1.0	1		03/28/25 08:09		
Tetrachloroethene	ND ND	ug/L	1.0	1		03/28/25 08:09		L1,v1
Toluene	ND ND	•	1.0	1		03/28/25 08:09		LI,VI
		ug/L						
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 08:09		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 08:09		
Trichloroethene	ND	ug/L	1.0	1		03/28/25 08:09		
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 08:09		
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 08:09		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 08:09		
/inyl chloride	4.4	ug/L	1.0	1		03/28/25 08:09		
(ylene (Total)	ND	ug/L	1.0	1		03/28/25 08:09		
n&p-Xylene	ND	ug/L	2.0	1		03/28/25 08:09		
p-Xylene	ND	ug/L	1.0	1		03/28/25 08:09	95-47-6	
Surrogates		0.4	70.400			00/00/05 00 00		
1-Bromofluorobenzene (S)	96	%	70-130	1		03/28/25 08:09		
,2-Dichloroethane-d4 (S)	111	%	70-130	1		03/28/25 08:09		
Toluene-d8 (S)	102	%	70-130	1		03/28/25 08:09	2037-26-5	
NC 6020B MET ICPMS	Analytical Meth	hod: EPA 60	20B Preparation Me	thod: EF	PA 3005A			
	Pace Analytica	l Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/15/25 23:06	7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 23:06	7440-38-2	
Barium	687	ug/L	25.0	5	04/14/25 08:33	04/22/25 10:50	7440-39-3	
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33	04/15/25 23:06	7440-41-7	
Cadmium	ND	ug/L	1.0	1		04/15/25 23:06		
Chromium	ND	ug/L	5.0	1		04/15/25 23:06		
Cobalt	9.5	ug/L	5.0	1		04/15/25 23:06		
Copper	ND	ug/L	5.0	1		04/15/25 23:06		
_ead	ND	ug/L	5.0	1		04/15/25 23:06		
Nickel	ND ND	ug/L	5.0	1		04/15/25 23:06		
Selenium	ND ND	ug/L	10.0	1		04/15/25 23:06		
JOIOTHUITI		ug/L ug/L	5.0	1	04/14/25 08:33			
Silver	ND ND	•						
Silver Fhallium /anadium	ND ND ND	ug/L ug/L ug/L	0.50 5.0	1 1	04/14/25 08:33	04/15/25 23:06 04/15/25 23:06 04/15/25 23:06	7440-28-0	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: CANNONS CREEK	Lab ID: 92	787163009	Collected: 03/24/2	25 14:40	Received: 03	3/26/25 07:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 80°	11 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytic	al Services -	Charlotte					
,2-Dibromo-3-chloropropane	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 18:03	3 96-12-8	
,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 18:03	3 106-93-4	
-Chloro-2-bromopropane (S)	125	%	60-140	1	04/03/25 12:58	04/03/25 18:03	301-79-56	
Monitoring Well Data,Greenwood	Analytical Me	thod:						
	Pace Analytic	al Services -	Greenwood					
Performed by	PACE			1		03/24/25 14:40)	
Collected By	Trey			1		03/24/25 14:40)	
Collected Date	Jenkins 032425			1		03/24/25 14:40	1	
Collected Date	032425 1440			1		03/24/25 14:40		
H	6.5	Std. Units		1		03/24/25 14:40		
emperature	16	deg C		1		03/24/25 14:40		
Specific Conductance	105	umhos/cm		1		03/24/25 14:40		
urbidity	11.5	NTU		1		03/24/25 14:40		
Odor	none	1110		1		03/24/25 14:40		
ppearance	clear			1		03/24/25 14:40		
260 MSV Low Level SC	Analytical Me	thod: EPA 826	60D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		03/28/25 05:06	67-64-1	
crylonitrile	ND	ug/L	10.0	1		03/28/25 05:06	107-13-1	
Benzene	ND	ug/L	1.0	1		03/28/25 05:06	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 05:06	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 05:06	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/25 05:06	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/28/25 05:06	74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 05:06	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 05:06	5 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 05:06	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 05:06	108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/28/25 05:06	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/28/25 05:06		
Chloromethane	ND	ug/L	1.0	1		03/28/25 05:06	74-87-3	v1
Pibromochloromethane	ND	ug/L	1.0	1		03/28/25 05:06	3 124-48-1	
Pibromomethane	ND	ug/L	1.0	1		03/28/25 05:06		
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 05:06		
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 05:06		
ans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 05:06		
,1-Dichloroethane	ND	ug/L	1.0	1		03/28/25 05:06		
,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 05:06		
,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 05:06		v1
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 05:06		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 05:06		
,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 05:06	78-87-5	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: CANNONS CREEK	Lab ID: 927	87163009	Collected: 03/24/2	5 14:40	Received: 03	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level SC	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 05:0	6 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 05:00	6 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 05:00	6 100-41-4	
2-Hexanone	ND	ug/L	5.0	1		03/28/25 05:00	6 591-78-6	
odomethane	ND	ug/L	20.0	1		03/28/25 05:00	6 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 05:00	6 75-09-2	v1
l-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 05:00	6 108-10-1	
Styrene	ND	ug/L	1.0	1		03/28/25 05:00	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 05:00	6 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 05:00	6 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 05:00	6 127-18-4	L1,v1
Toluene	ND	ug/L	1.0	1		03/28/25 05:00	6 108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 05:00	6 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 05:00	6 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/28/25 05:00	6 79-01-6	
richlorofluoromethane	ND	ug/L	1.0	1		03/28/25 05:00	6 75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 05:00	6 96-18-4	
/inyl acetate	ND	ug/L	2.0	1		03/28/25 05:00		
/inyl chloride	ND	ug/L	1.0	1		03/28/25 05:00		
(Ylene (Total)	ND	ug/L	1.0	1		03/28/25 05:00		
n&p-Xylene	ND	ug/L	2.0	1			6 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/25 05:00	6 95-47-6	
Surrogates	00	0/	70.400	4		00/00/05 05 0		
4-Bromofluorobenzene (S)	93	%	70-130	1		03/28/25 05:00		
,2-Dichloroethane-d4 (S)	112	%	70-130	1		03/28/25 05:00		
Toluene-d8 (S)	104	%	70-130	1		03/28/25 05:00	0 2037-26-5	
NC 6020B MET ICPMS			020B Preparation Me	thod: EP	A 3005A			
	Pace Analytica	ll Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-38-2	
Barium	52.6	ug/L	5.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-39-3	
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-41-7	
Cadmium	ND	ug/L	1.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-43-9	
Chromium	ND	ug/L	5.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-47-3	
Cobalt	ND	ug/L	5.0	1	04/14/25 08:33	04/15/25 23:10	6 7440-48-4	
Copper	ND	ug/L	5.0			04/15/25 23:10		
_ead	ND	ug/L	5.0			04/15/25 23:10		
Nickel	ND	ug/L	5.0			04/15/25 23:10		
Selenium	ND	ug/L	10.0			04/15/25 23:10		
Silver	ND	ug/L	5.0			04/15/25 23:10		
Thallium	ND	ug/L	0.50			04/15/25 23:10		
/anadium	ND	ug/L	5.0			04/15/25 23:10		
Zinc	19.7	ug/L	10.0	1	04/14/25 08:33	04/24/25 12:14	4 7440-66-6	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: TMW-10	Lab ID: 92	787163010	Collected: 03/24/2	25 16:00	Received: 03	3/26/25 07:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 801	1 Preparation Meth	nod: EPA	\ 8011			
	Pace Analytic	al Services - 0	Charlotte					
1,2-Dibromo-3-chloropropane	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 18:14	96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	0.022	1	04/03/25 12:58	04/03/25 18:14	106-93-4	
Surrogates								
I-Chloro-2-bromopropane (S)	111	%	60-140	1	04/03/25 12:58	04/03/25 18:14	301-79-56	
Monitoring Well Data,Greenwood	Analytical Me	thod:						
	Pace Analytic	al Services - 0	Greenwood					
Performed by	PACE			1		03/24/25 16:00		
Collected By	Trey			1		03/24/25 16:00		
·	Jenkins							
Collected Date	032425			1		03/24/25 16:00		
Collected Time	1600	0.1.11.7		1		03/24/25 16:00		
bН -	5.7	Std. Units		1		03/24/25 16:00		
Femperature	19	deg C		1		03/24/25 16:00		
Static Water Level	17.49	feet		1		03/24/25 16:00		
Specific Conductance	271	umhos/cm		1		03/24/25 16:00		
otal Well Depth	43.88 2.0	feet NTU		1 1		03/24/25 16:00 03/24/25 16:00		
Furbidity	clear	NIO		1		03/24/25 16:00		
Appearance	Clear			'		03/24/23 10.00		
3260 MSV Low Level SC	Analytical Me	thod: EPA 826	60D					
	Pace Analytic	al Services - 0	Charlotte					
Acetone	ND	ug/L	25.0	1		04/02/25 16:40	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		04/02/25 16:40	107-13-1	
Benzene	2.1	ug/L	1.0	1		04/02/25 16:40	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		04/02/25 16:40	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		04/02/25 16:40	75-27-4	
Bromoform	ND	ug/L	1.0	1		04/02/25 16:40	75-25-2	
Bromomethane	ND	ug/L	2.0	1		04/02/25 16:40		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		04/02/25 16:40		
Carbon disulfide	ND	ug/L	2.0	1		04/02/25 16:40		
Carbon tetrachloride	ND	ug/L	1.0	1		04/02/25 16:40		
Chlorobenzene	ND	ug/L	1.0	1		04/02/25 16:40		
Chloroethane	ND	ug/L	1.0	1		04/02/25 16:40		
Chloroform	ND	ug/L	1.0	1		04/02/25 16:40		
Chloromethane	ND	ug/L	1.0	1		04/02/25 16:40		
Dibromochloromethane	ND	ug/L	1.0	1		04/02/25 16:40		
Dibromomethane	ND	ug/L	1.0	1		04/02/25 16:40		
,2-Dichlorobenzene	ND	ug/L	1.0	1		04/02/25 16:40		
,4-Dichlorobenzene	ND	ug/L	1.0	1		04/02/25 16:40		0
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		04/02/25 16:40		v2
I,1-Dichloroethane	9.3	ug/L	1.0	1		04/02/25 16:40		
1,2-Dichloroethane	ND	ug/L	1.0 1.0	1 1		04/02/25 16:40 04/02/25 16:40		
1 1 Diablaraathana						D4/UZ/Z5 16:40	(2-32-4	
1,1-Dichloroethene cis-1,2-Dichloroethene	ND 25.6	ug/L ug/L	1.0	1		04/02/25 16:40		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: TMW-10	Lab ID: 927	87163010	Collected: 03/24/2	25 16:00	Received: 03	3/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level SC	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
1,2-Dichloropropane	ND	ug/L	1.0	1		04/02/25 16:40	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		04/02/25 16:40	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		04/02/25 16:40	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		04/02/25 16:40	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		04/02/25 16:40	591-78-6	
odomethane	ND	ug/L	20.0	1		04/02/25 16:40	74-88-4	
Methylene Chloride	12.1	ug/L	5.0	1		04/02/25 16:40	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		04/02/25 16:40	108-10-1	
Styrene	ND	ug/L	1.0	1		04/02/25 16:40	100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		04/02/25 16:40	630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		04/02/25 16:40	79-34-5	
Tetrachloroethene	1.7	ug/L	1.0	1		04/02/25 16:40	127-18-4	v1
- oluene	ND	ug/L	1.0	1		04/02/25 16:40	108-88-3	
,1,1-Trichloroethane	ND	ug/L	1.0	1		04/02/25 16:40		
,1,2-Trichloroethane	ND	ug/L	1.0	1		04/02/25 16:40		
richloroethene	3.2	ug/L	1.0	1		04/02/25 16:40	79-01-6	
richlorofluoromethane	ND	ug/L	1.0	1		04/02/25 16:40		
,2,3-Trichloropropane	ND	ug/L	1.0	1		04/02/25 16:40	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		04/02/25 16:40		
/inyl chloride	ND	ug/L	1.0	1		04/02/25 16:40		
(ylene (Total)	ND	ug/L	1.0	1		04/02/25 16:40		
n&p-Xylene	ND	ug/L	2.0	1			179601-23-1	
-Xylene	ND	ug/L	1.0	1		04/02/25 16:40		
Surrogates		-9-		•				
-Bromofluorobenzene (S)	93	%	70-130	1		04/02/25 16:40	460-00-4	
,2-Dichloroethane-d4 (S)	91	%	70-130	1		04/02/25 16:40	17060-07-0	
oluene-d8 (S)	98	%	70-130	1		04/02/25 16:40	2037-26-5	
VC 6020B MET ICPMS	Analytical Metl	nod: EPA 60	20B Preparation Me	thod: EF	PA 3005A			
	Pace Analytica	l Services -	West Columbia					
antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/16/25 00:22	2 7440-36-0	
rsenic	ND	ug/L	10.0	1	04/14/25 08:33			
Barium	263	ug/L	5.0	1	04/14/25 08:33			
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33			
Cadmium	ND	ug/L	1.0	1		04/16/25 00:22		
Chromium	ND	ug/L	5.0	1	04/14/25 08:33			
Cobalt	ND	ug/L	5.0	1		04/16/25 00:22		
Copper	ND	ug/L	5.0	1	04/14/25 08:33			
ead	ND	ug/L	5.0	1	04/14/25 08:33			
lickel	ND ND	ug/L	5.0	1		04/16/25 00:22		
Selenium	ND ND	ug/L ug/L	10.0	1	04/14/25 08:33			
Silver	ND ND	ug/L ug/L	5.0	1	04/14/25 08:33			
Thallium	ND ND	•	0.50	1	04/14/25 08:33			
	ND ND	ug/L ug/L	0.50 5.0	1	04/14/25 08:33			
/anadium								

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: TMW-9	Lab ID: 92	787163011	Collected: 03/24/2	25 16:57	Received: 03	3/26/25 07:30 I	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 801	11 Preparation Meth	nod: EPA	\ 8011				
	Pace Analytic	al Services - 0	Charlotte						
1,2-Dibromo-3-chloropropane	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 18:26	96-12-8		
1,2-Dibromoethane (EDB) Surrogates	ND	ug/L	0.021	1	04/03/25 12:58	04/03/25 18:26	106-93-4		
I-Chloro-2-bromopropane (S)	101	%	60-140	1	04/03/25 12:58	04/03/25 18:26	301-79-56		
Monitoring Well Data,Greenwood	Analytical Me	Analytical Method:							
	Pace Analytic	Pace Analytical Services - Greenwood							
Performed by	PACE			1		03/24/25 16:57	7		
Collected By	Trey			1		03/24/25 16:57	7		
Collected Date	Jenkins 032425			1		03/24/25 16:57	7		
Collected Date Collected Time	1657			1		03/24/25 16:57			
pH	5.9	Std. Units		1		03/24/25 16:57			
Temperature	19	deg C		1		03/24/25 16:57			
Static Water Level	46.78	feet		1		03/24/25 16:57			
Specific Conductance	708	umhos/cm		1		03/24/25 16:57			
Total Well Depth	700 71.0	feet		1		03/24/25 16:57			
Turbidity	1.6	NTU		1		03/24/25 16:57			
Odor	slight	NIO		1		03/24/25 16:57			
Appearance	clear			1		03/24/25 16:57			
3260 MSV Low Level SC	Analytical Me	thod: EPA 826	60D						
	Pace Analytic	al Services - 0	Charlotte						
Acetone	ND	ug/L	25.0	1		03/28/25 07:14	67-64-1		
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 07:14	107-13-1		
Benzene	1.7	ug/L	1.0	1		03/28/25 07:14	71-43-2		
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 07:14	74-97-5		
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 07:14	75-27-4		
Bromoform	ND	ug/L	1.0	1		03/28/25 07:14	75-25-2		
Bromomethane	ND	ug/L	2.0	1		03/28/25 07:14	74-83-9		
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 07:14	78-93-3		
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 07:14	75-15-0		
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 07:14	56-23-5		
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 07:14	108-90-7		
Chloroethane	ND	ug/L	1.0	1		03/28/25 07:14	75-00-3		
Chloroform	ND	ug/L	1.0	1		03/28/25 07:14	67-66-3		
Chloromethane	ND	ug/L	1.0	1		03/28/25 07:14	74-87-3	v1	
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 07:14	124-48-1		
Dibromomethane	ND	ug/L	1.0	1		03/28/25 07:14	74-95-3		
I,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 07:14	95-50-1		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 07:14	106-46-7		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 07:14	110-57-6		
I,1-Dichloroethane	4.3	ug/L	1.0	1		03/28/25 07:14	75-34-3		
I,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 07:14			
1,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 07:14		v1	
cis-1.2-Dichloroethene	10.9	ug/L	1.0	1		03/28/25 07:14			

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Date: 04/25/2025 01:52 PM

Sample: TMW-9	Lab ID: 927	87163011	Collected: 03/24/2	5 16:57	Received: 03	8/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2000 MCV Law Laws LCC	Analytical Moth	and, EDA 01			<u> </u>		_	
3260 MSV Low Level SC	Analytical Meth Pace Analytica							
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 07:14	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 07:14		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 07:14		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/25 07:14		
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 07:14		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 07:14	591-78-6	
odomethane	ND	ug/L	20.0	1		03/28/25 07:14		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 07:14		v1
1-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 07:14		• •
Styrene	ND	ug/L	1.0	1		03/28/25 07:14		
1,1,1,2-Tetrachloroethane	ND ND	ug/L	1.0	1		03/28/25 07:14		
1,1,2,2-Tetrachloroethane	ND ND	ug/L	1.0	1		03/28/25 07:14		
Tetrachloroethene	ND ND	ug/L	1.0	1		03/28/25 07:14		L1,v1
	ND ND	•		1		03/28/25 07:14	-	LI,VI
oluene		ug/L	1.0					
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 07:14		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 07:14		
richloroethene	ND	ug/L	1.0	1		03/28/25 07:14		
richlorofluoromethane	ND	ug/L	1.0	1		03/28/25 07:14		
,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 07:14		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 07:14		
/inyl chloride	3.7	ug/L	1.0	1		03/28/25 07:14		
(ylene (Total)	ND	ug/L	1.0	1		03/28/25 07:14		
n&p-Xylene	ND	ug/L	2.0	1			179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/25 07:14	95-47-6	
Surrogates	20	0.4	70.400			00/00/05 07 4		
l-Bromofluorobenzene (S)	96	%	70-130	1		03/28/25 07:14		
,2-Dichloroethane-d4 (S)	110	%	70-130	1		03/28/25 07:14		
Toluene-d8 (S)	104	%	70-130	1		03/28/25 07:14	2037-26-5	
WC 6020B MET ICPMS	•		020B Preparation Me	thod: El	PA 3005A			
	Pace Analytica	I Services -	West Columbia					
Antimony	ND	ug/L	2.0	1	04/14/25 08:33	04/16/25 00:31	7440-36-0	
Arsenic	ND	ug/L	10.0	1	04/14/25 08:33	04/16/25 00:31	7440-38-2	
Barium	1120	ug/L	50.0	10	04/14/25 08:33	04/22/25 10:55	7440-39-3	
Beryllium	ND	ug/L	1.0	1	04/14/25 08:33	04/16/25 00:31	7440-41-7	
Cadmium	ND	ug/L	1.0	1	04/14/25 08:33	04/16/25 00:31	7440-43-9	
Chromium	ND	ug/L	5.0	1	04/14/25 08:33	04/16/25 00:31	7440-47-3	
Cobalt	ND	ug/L	5.0	1	04/14/25 08:33	04/16/25 00:31	7440-48-4	
Copper	ND	ug/L	5.0	1	04/14/25 08:33	04/16/25 00:31	7440-50-8	
_ead	ND	ug/L	5.0	1		04/16/25 00:31		
Nickel	ND	ug/L	5.0	1		04/16/25 00:31		
Selenium	ND	ug/L	10.0	1		04/16/25 00:31		
Silver	ND	ug/L	5.0	1		04/16/25 00:31		
Fhallium	ND	ug/L	0.50	1		04/16/25 00:31		
/anadium	ND ND	ug/L	5.0	1		04/16/25 00:31		
	שווו	uu/L	5.0	1	UT/ 1T/20 UU.33	UT/ 10/20 00.01	1 770-02-2	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: TRIP BLANK	Lab ID: 927	87163012	Collected: 03/24/2	25 16:48	Received:	03/26/25 07:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level SC	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		03/28/25 02:0	3 67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		03/28/25 02:0		
Benzene	ND	ug/L	1.0	1		03/28/25 02:0	3 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		03/28/25 02:0	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/25 02:0	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/25 02:0		
Bromomethane	ND	ug/L	2.0	1		03/28/25 02:0		
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/25 02:0	3 78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		03/28/25 02:0		
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/25 02:0		
Chlorobenzene	ND	ug/L	1.0	1		03/28/25 02:0		
Chloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
Chloroform	ND	ug/L	1.0	1		03/28/25 02:0		
Chloromethane	ND	ug/L	1.0	1		03/28/25 02:0		v1
Dibromochloromethane	ND	ug/L	1.0	1		03/28/25 02:0		
Dibromomethane	ND	ug/L	1.0	1		03/28/25 02:0		
.2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 02:0		
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/25 02:0		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		03/28/25 02:0		
1,1-Dichloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
I,2-Dichloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/28/25 02:0		v1
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 02:0		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/25 02:0		
1,2-Dichloropropane	ND	ug/L	1.0	1		03/28/25 02:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		03/28/25 02:0		
2-Hexanone	ND	ug/L	5.0	1		03/28/25 02:0		
odomethane	ND	ug/L	20.0	1		03/28/25 02:0		
Methylene Chloride	ND	ug/L	5.0	1		03/28/25 02:0		v1
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/25 02:0		
Styrene	ND	ug/L	1.0	1		03/28/25 02:0		
I,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
Tetrachloroethene	ND	ug/L	1.0	1		03/28/25 02:0		L1,v1
Toluene	ND	ug/L	1.0	1		03/28/25 02:0		,
,1,1-Trichloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/25 02:0		
richloroethene	ND	ug/L	1.0	1		03/28/25 02:0		
Frichlorofluoromethane	ND	ug/L	1.0	1		03/28/25 02:0		
I,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/25 02:0		
/inyl acetate	ND	ug/L	2.0	1		03/28/25 02:0		
/inyl chloride	ND	ug/L	1.0	1		03/28/25 02:0		
(ylene (Total)	ND	ug/L	1.0	1		03/28/25 02:0		
m&p-Xylene	ND	ug/L	2.0	1		03/28/25 02:0		

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: TRIP BLANK	Lab ID: 927	Lab ID: 92787163012		25 16:48	Received: 0	3/26/25 07:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC	Analytical Met Pace Analytica							
o-Xylene Surrogates	ND	ug/L	1.0	1		03/28/25 02:03	95-47-6	
4-Bromofluorobenzene (S)	96	%	70-130	1		03/28/25 02:03	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%	70-130	1		03/28/25 02:03	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		03/28/25 02:03	2037-26-5	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-8	Lab ID: 92	790600001	Collected: 04/10/2	5 16:10	Received: 04	1/11/25 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8011 GCS EDB and DBCP	Analytical Me	thod: EPA 80°	11 Preparation Meth	nod: EPA	x 8011			
	Pace Analytic	cal Services -	Charlotte					
1,2-Dibromo-3-chloropropane	ND	ug/L	0.020	1	04/15/25 07:58	04/15/25 23:14	4 96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	0.020	1	04/15/25 07:58			
Surrogates		~ g, =	0.020	•	0 17 107 20 01 100	0 17 10720 2011		
1-Chloro-2-bromopropane (S)	80	%	60-140	1	04/15/25 07:58	04/15/25 23:14	4 301-79-56	
Monitoring Well Data, Greenwood	Analytical Me	thod:						
3	•	al Services -	Greenwood					
Performed by	PACE			1		04/21/25 17:10)	
Collected By	C. Corbin			1		04/21/25 17:10		
Collected Date	3/25/25			1		04/21/25 17:10		
Collected Time	16:45			1		04/21/25 17:10		
oH	5.7	Std. Units		1		04/21/25 17:10		
Temperature	19	deg C		1		04/21/25 17:10		
Static Water Level	33.63	feet		1		04/21/25 17:10		
Specific Conductance	232	umhos/cm		1		04/21/25 17:10		
Total Well Depth	71.84	feet		1		04/21/25 17:10		
Turbidity	12	NTU		1		04/21/25 17:10		
-				•		0 1/2 1/20 17:10	,	
8260 MSV Low Level SC	•	thod: EPA 826						
	Pace Analytic	cal Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		04/14/25 15:06	6 67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		04/14/25 15:06	6 107-13-1	
Benzene	2.4	ug/L	1.0	1		04/14/25 15:06	6 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		04/14/25 15:06	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		04/14/25 15:06		
Bromoform	ND	ug/L	1.0	1		04/14/25 15:06	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		04/14/25 15:06	6 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		04/14/25 15:06	6 78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		04/14/25 15:00		
Carbon tetrachloride	ND	ug/L	1.0	1		04/14/25 15:06		
Chlorobenzene	ND	ug/L	1.0	1		04/14/25 15:06		
Chloroethane	ND	ug/L	1.0	1		04/14/25 15:06		
Chloroform	ND	ug/L	1.0	1		04/14/25 15:06		
Chloromethane	ND	ug/L	1.0	1		04/14/25 15:06		
Dibromochloromethane	ND	ug/L	1.0	1		04/14/25 15:06		
Dibromomethane	ND ND	ug/L	1.0	1		04/14/25 15:06		
,2-Dichlorobenzene	ND	ug/L	1.0	1		04/14/25 15:06		
,4-Dichlorobenzene	2.0	ug/L	1.0	1		04/14/25 15:06		
rans-1,4-Dichloro-2-butene	ND	-		1		04/14/25 15:00		
.1-Dichloroethane	14.3	ug/L	1.0 1.0	1		04/14/25 15:06		
,1-Dichloroethane ,2-Dichloroethane	14.3 ND	ug/L	1.0	1		04/14/25 15:06		
,		ug/L						
,1-Dichloroethene	1.7	ug/L	1.0	1		04/14/25 15:06		
cis-1,2-Dichloroethene	33.7	ug/L	1.0	1		04/14/25 15:06		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		04/14/25 15:06		
1,2-Dichloropropane	ND	ug/L	1.0	1		04/14/25 15:06		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		04/14/25 15:06	10061-01-5	

ANALYTICAL RESULTS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Sample: MW-8	Lab ID: 92	2790600001	Collected: 04/10/2	5 16:10	Received: 0	4/11/25 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level SC	Analytical Mo	ethod: EPA 82	260D					
	Pace Analyti	cal Services -	Charlotte					
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		04/14/25 15:00	6 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		04/14/25 15:00		
2-Hexanone	ND	ug/L	5.0	1		04/14/25 15:00		
odomethane	ND	ug/L	20.0	1		04/14/25 15:00		
Methylene Chloride	41.5	ug/L	5.0	1		04/14/25 15:00		
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		04/14/25 15:00		
Styrene	ND	ug/L	1.0	1		04/14/25 15:00		
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		04/14/25 15:00		
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		04/14/25 15:00	6 79-34-5	
etrachloroethene	2.4	ug/L	1.0	1		04/14/25 15:00		
oluene	ND	ug/L	1.0	1		04/14/25 15:00		
,1,1-Trichloroethane	ND	ug/L	1.0	1		04/14/25 15:00		
,1,2-Trichloroethane	ND	ug/L	1.0	1		04/14/25 15:00		
richloroethene	5.1	ug/L	1.0	1		04/14/25 15:00		
richlorofluoromethane	1.4	ug/L	1.0	1		04/14/25 15:00		
,2,3-Trichloropropane	ND	ug/L	1.0	1		04/14/25 15:00		
inyl acetate	ND	ug/L	2.0	1		04/14/25 15:00		
inyl chloride	ND	ug/L	1.0	1		04/14/25 15:00		
(ylene (Total)	ND	ug/L	1.0	1		04/14/25 15:00		
n&p-Xylene	ND	ug/L	2.0	1			6 179601-23-1	
-Xylene	ND	ug/L	1.0	1		04/14/25 15:00		
Surrogates		~g/ _		•		0 17 1 17 20 1010		
-Bromofluorobenzene (S)	108	%	70-130	1		04/14/25 15:00	6 460-00-4	
,2-Dichloroethane-d4 (S)	100	%	70-130	1		04/14/25 15:00	6 17060-07-0	
oluene-d8 (S)	106	%	70-130	1		04/14/25 15:00	6 2037-26-5	
VC 6020B MET ICPMS	Analytical Mo	ethod: EPA 60	020B Preparation Me	thod: EP	A 3005A			
	Pace Analyti	cal Services -	West Columbia					
ntimony	ND	ug/L	10.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7440-36-0	
rsenic	ND	ug/L	50.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7440-38-2	
Sarium	275	ug/L	25.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7440-39-3	
eryllium	ND	ug/L	5.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7440-41-7	
cadmium	ND	ug/L	5.0		04/16/25 07:46	6 04/17/25 14:24	4 7440-43-9	
hromium	ND	ug/L	25.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7440-47-3	
obalt	ND	ug/L	25.0	5	04/16/25 07:46	04/17/25 14:24	4 7440-48-4	
Copper	ND	ug/L	25.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7440-50-8	
ead	ND	ug/L	25.0	5	04/16/25 07:46	6 04/17/25 14:24	4 7439-92-1	
lickel	ND	ug/L	25.0			6 04/17/25 14:24		
selenium	ND	ug/L	50.0			6 04/17/25 14:24		
iilver	ND	ug/L	25.0			6 04/17/25 14:24		
'hallium	ND	ug/L	2.5			6 04/17/25 14:24		
'anadium	ND	ug/L	25.0			6 04/17/25 14:24		
Zinc	ND	ug/L	50.0			6 04/17/25 14:24		

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

QC Batch: 925317 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

92787163008, 92787163009, 92787163011, 92787163012

METHOD BLANK: 4753295 Matrix: Water

Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

92787163008, 92787163009, 92787163011, 92787163012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	03/27/25 23:37	
1,1,1-Trichloroethane	ug/L	ND	1.0	03/27/25 23:37	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	03/27/25 23:37	
1,1,2-Trichloroethane	ug/L	ND	1.0	03/27/25 23:37	
1,1-Dichloroethane	ug/L	ND	1.0	03/27/25 23:37	
1,1-Dichloroethene	ug/L	ND	1.0	03/27/25 23:37	v1
1,2,3-Trichloropropane	ug/L	ND	1.0	03/27/25 23:37	
1,2-Dichlorobenzene	ug/L	ND	1.0	03/27/25 23:37	
1,2-Dichloroethane	ug/L	ND	1.0	03/27/25 23:37	
1,2-Dichloropropane	ug/L	ND	1.0	03/27/25 23:37	
1,4-Dichlorobenzene	ug/L	ND	1.0	03/27/25 23:37	
2-Butanone (MEK)	ug/L	ND	5.0	03/27/25 23:37	
2-Hexanone	ug/L	ND	5.0	03/27/25 23:37	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	03/27/25 23:37	
Acetone	ug/L	ND	25.0	03/27/25 23:37	
Acrylonitrile	ug/L	ND	10.0	03/27/25 23:37	
Benzene	ug/L	ND	1.0	03/27/25 23:37	
Bromochloromethane	ug/L	ND	1.0	03/27/25 23:37	
Bromodichloromethane	ug/L	ND	1.0	03/27/25 23:37	
Bromoform	ug/L	ND	1.0	03/27/25 23:37	
Bromomethane	ug/L	ND	2.0	03/27/25 23:37	
Carbon disulfide	ug/L	ND	2.0	03/27/25 23:37	
Carbon tetrachloride	ug/L	ND	1.0	03/27/25 23:37	
Chlorobenzene	ug/L	ND	1.0	03/27/25 23:37	
Chloroethane	ug/L	ND	1.0	03/27/25 23:37	
Chloroform	ug/L	ND	1.0	03/27/25 23:37	
Chloromethane	ug/L	ND	1.0	03/27/25 23:37	v1
cis-1,2-Dichloroethene	ug/L	ND	1.0	03/27/25 23:37	
cis-1,3-Dichloropropene	ug/L	ND	1.0	03/27/25 23:37	
Dibromochloromethane	ug/L	ND	1.0	03/27/25 23:37	
Dibromomethane	ug/L	ND	1.0	03/27/25 23:37	
Ethylbenzene	ug/L	ND	1.0	03/27/25 23:37	
Iodomethane	ug/L	ND	20.0	03/27/25 23:37	
m&p-Xylene	ug/L	ND	2.0	03/27/25 23:37	
Methylene Chloride	ug/L	ND	5.0	03/27/25 23:37	v1
o-Xylene	ug/L	ND	1.0	03/27/25 23:37	
Styrene	ug/L	ND	1.0	03/27/25 23:37	
Tetrachloroethene	ug/L	ND	1.0	03/27/25 23:37	v1
Toluene	ug/L	ND	1.0	03/27/25 23:37	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

METHOD BLANK: 4753295 Matrix: Water

Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

92787163008, 92787163009, 92787163011, 92787163012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/27/25 23:37	
trans-1,3-Dichloropropene	ug/L	ND	1.0	03/27/25 23:37	
trans-1,4-Dichloro-2-butene	ug/L	ND	1.0	03/27/25 23:37	
Trichloroethene	ug/L	ND	1.0	03/27/25 23:37	
Trichlorofluoromethane	ug/L	ND	1.0	03/27/25 23:37	
Vinyl acetate	ug/L	ND	2.0	03/27/25 23:37	
Vinyl chloride	ug/L	ND	1.0	03/27/25 23:37	
Xylene (Total)	ug/L	ND	1.0	03/27/25 23:37	
1,2-Dichloroethane-d4 (S)	%	110	70-130	03/27/25 23:37	
4-Bromofluorobenzene (S)	%	97	70-130	03/27/25 23:37	
Toluene-d8 (S)	%	103	70-130	03/27/25 23:37	

LABORATORY CONTROL SAMPLE:	4753296						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
1,1,1,2-Tetrachloroethane	ug/L		20.1	101	70-130		
1,1,1-Trichloroethane	ug/L	20	21.6	108	70-130		
1,1,2,2-Tetrachloroethane	ug/L	20	20.9	105	70-130		
1,1,2-Trichloroethane	ug/L	20	20.6	103	70-130		
1,1-Dichloroethane	ug/L	20	23.2	116	70-130		
1,1-Dichloroethene	ug/L	20	24.4	122	70-130 v	1	
1,2,3-Trichloropropane	ug/L	20	21.1	105	70-130		
1,2-Dichlorobenzene	ug/L	20	21.4	107	70-130		
1,2-Dichloroethane	ug/L	20	21.6	108	70-130		
1,2-Dichloropropane	ug/L	20	22.6	113	70-130		
1,4-Dichlorobenzene	ug/L	20	21.6	108	70-130		
2-Butanone (MEK)	ug/L	40	45.8	115	70-130		
2-Hexanone	ug/L	40	45.8	114	70-130		
4-Methyl-2-pentanone (MIBK)	ug/L	40	43.3	108	70-130		
Acetone	ug/L	40	45.9	115	70-130		
Acrylonitrile	ug/L	100	114	114	70-130		
Benzene	ug/L	20	22.9	114	70-130		
Bromochloromethane	ug/L	20	21.7	108	70-130		
Bromodichloromethane	ug/L	20	20.5	103	70-130		
Bromoform	ug/L	20	19.1	95	70-130		
Bromomethane	ug/L	20	20.6	103	70-130		
Carbon disulfide	ug/L	20	23.9	119	70-130		
Carbon tetrachloride	ug/L	20	21.0	105	70-130		
Chlorobenzene	ug/L	20	21.0	105	70-130		
Chloroethane	ug/L	20	23.8	119	70-130		
Chloroform	ug/L	20	21.2	106	70-130		
Chloromethane	ug/L	20	25.6	128	70-130 v	1	
cis-1,2-Dichloroethene	ug/L	20	23.0	115	70-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

ABORATORY CONTROL SAMPLE:	4753296	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
is-1,3-Dichloropropene	ug/L		21.0	105	70-130	
ibromochloromethane	ug/L	20	20.3	101	70-130	
bromomethane	ug/L	20	19.0	95	70-130	
hylbenzene	ug/L	20	21.0	105	70-130	
lomethane	ug/L	40	40.2	101	70-130	
kp-Xylene	ug/L	40	42.5	106	70-130	
thylene Chloride	ug/L	20	25.9	129	70-130 v	′ 1
(ylene	ug/L	20	22.1	111	70-130	
rene	ug/L	20	21.4	107	70-130	
achloroethene	ug/L	20	32.1	160	70-130 L	_1,v1
ene	ug/L	20	21.1	105	70-130	
s-1,2-Dichloroethene	ug/L	20	23.6	118	70-130	
s-1,3-Dichloropropene	ug/L	20	21.2	106	70-130	
s-1,4-Dichloro-2-butene	ug/L	20	16.9	85	70-130	
nloroethene	ug/L	20	21.3	107	70-130	
hlorofluoromethane	ug/L	20	20.7	104	70-130	
yl acetate	ug/L	40	37.2	93	70-130	
yl chloride	ug/L	20	23.5	118	70-130	
ene (Total)	ug/L	60	64.6	108	70-130	
Dichloroethane-d4 (S)	%			107	70-130	
omofluorobenzene (S)	%			99	70-130	
iene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	4753297						
		92787163003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	20	18.0	90	73-134	
1,1,1-Trichloroethane	ug/L	ND	20	21.1	105	82-143	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	17.4	87	70-136	
1,1,2-Trichloroethane	ug/L	ND	20	22.1	111	70-135 v	1
1,1-Dichloroethane	ug/L	ND	20	22.6	113	70-139	
1,1-Dichloroethene	ug/L	ND	20	23.1	115	70-154	
1,2,3-Trichloropropane	ug/L	ND	20	17.4	87	71-137	
1,2-Dichlorobenzene	ug/L	ND	20	15.4	77	70-133	
1,2-Dichloroethane	ug/L	ND	20	22.4	112	70-137	
1,2-Dichloropropane	ug/L	ND	20	21.7	108	70-140	
1,4-Dichlorobenzene	ug/L	ND	20	15.6	75	70-133	
2-Butanone (MEK)	ug/L	ND	40	39.5	99	60-139	
2-Hexanone	ug/L	ND	40	33.0	83	65-138	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	38.4	96	65-135	
Acetone	ug/L	ND	40	41.7	104	60-148	
Acrylonitrile	ug/L	ND	100	107	107	64-147	
Benzene	ug/L	2.3	20	23.9	108	70-151	
Bromochloromethane	ug/L	ND	20	24.4	122	70-141 v	1
Bromodichloromethane	ug/L	ND	20	21.5	107	70-138	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

MATRIX SPIKE SAMPLE:	4753297						
		92787163003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	ND	20	14.2	71	63-130	IK
Bromomethane	ug/L	ND	20	19.2	96	15-152	
Carbon disulfide	ug/L	ND	20	19.7	99	69-149	
Carbon tetrachloride	ug/L	ND	20	21.5	107	70-143	
Chlorobenzene	ug/L	ND	20	18.7	93	70-138	
Chloroethane	ug/L	2.1	20	22.0	99	52-163	
Chloroform	ug/L	ND	20	21.5	107	70-139	
Chloromethane	ug/L	ND	20	19.8	99	41-139	
cis-1,2-Dichloroethene	ug/L	ND	20	23.1	111	70-141	
cis-1,3-Dichloropropene	ug/L	ND	20	19.9	99	70-137	
Dibromochloromethane	ug/L	ND	20	16.8	84	70-134	
Dibromomethane	ug/L	ND	20	21.6	108	70-138	
Ethylbenzene	ug/L	ND	20	17.1	85	66-153	
lodomethane	ug/L	ND	40	43.4	108	20-138	
m&p-Xylene	ug/L	ND	40	34.8	87	69-152	
Methylene Chloride	ug/L	ND	20	21.1	105	42-159	
o-Xylene	ug/L	ND	20	16.6	83	70-148	
Styrene	ug/L	ND	20	17.4	87	70-135	
Tetrachloroethene	ug/L	ND	20	14.9	74	59-143	
Toluene	ug/L	ND	20	20.4	102	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	23.9	119	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	18.8	94	70-135	
trans-1,4-Dichloro-2-butene	ug/L	ND	20	14.6	73	47-135	
Trichloroethene	ug/L	ND	20	20.9	104	70-147	
Trichlorofluoromethane	ug/L	ND	20	21.3	107	70-148	
Vinyl acetate	ug/L	ND	40	44.9	112	49-151	
Vinyl chloride	ug/L	ND	20	21.1	102	70-156	
Xylene (Total)	ug/L	ND	60	51.4	86	63-158	
1,2-Dichloroethane-d4 (S)	%				107	70-130	
4-Bromofluorobenzene (S)	%				106	70-130	
Toluene-d8 (S)	%				105	70-130	

Date: 04/25/2025 01:52 PM

		92787163004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		
1,1,1-Trichloroethane	ug/L	ND	ND		
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		
1,1,2-Trichloroethane	ug/L	ND	ND		v1
1,1-Dichloroethane	ug/L	ND	ND		
1,1-Dichloroethene	ug/L	ND	ND		
1,2,3-Trichloropropane	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,2-Dichloroethane	ug/L	ND	ND		
1,2-Dichloropropane	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

SAMPLE DUPLICATE: 4753298 92787163004 Dup Parameter Units Result Result **RPD** Qualifiers ND 1,4-Dichlorobenzene ug/L ND ND 2-Butanone (MEK) ug/L ND ND 2-Hexanone ug/L ND 4-Methyl-2-pentanone (MIBK) ND ND ug/L ND ND Acetone ug/L Acrylonitrile ug/L ND ND ND Benzene ug/L ND Bromochloromethane ND ND v1 ug/L Bromodichloromethane ND ND ug/L ND Bromoform ug/L ND ΙK ND Bromomethane ug/L ND ND Carbon disulfide ug/L ND ND Carbon tetrachloride ug/L ND Chlorobenzene ND ND ug/L Chloroethane ND ND ug/L Chloroform ND ND ug/L Chloromethane ND ND ug/L ND cis-1.2-Dichloroethene ug/L ND ND cis-1,3-Dichloropropene ug/L ND ND Dibromochloromethane ND ug/L ND ug/L ND Dibromomethane ND Ethylbenzene ug/L ND ND Iodomethane ug/L ND ND m&p-Xylene ug/L ND Methylene Chloride ug/L ND ND o-Xylene ug/L ND ND Styrene ND ND ug/L ND Tetrachloroethene ug/L ND ND ND Toluene ug/L trans-1,2-Dichloroethene ND ND ug/L ND ND trans-1,3-Dichloropropene ug/L trans-1,4-Dichloro-2-butene ND ND ug/L Trichloroethene ND ND ug/L Trichlorofluoromethane ug/L ND ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND Xylene (Total) ug/L ND ND 109 107 1,2-Dichloroethane-d4 (S) % 96 4-Bromofluorobenzene (S) % 96 102 Toluene-d8 (S) % 102

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

QC Batch: 926315 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92787163010

METHOD BLANK: 4758146 Matrix: Water

Associated Lab Samples: 92787163010

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND -	1.0	04/02/25 13:56	
1,1,1-Trichloroethane	ug/L	ND	1.0	04/02/25 13:56	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	04/02/25 13:56	
1,1,2-Trichloroethane	ug/L	ND	1.0	04/02/25 13:56	
1,1-Dichloroethane	ug/L	ND	1.0	04/02/25 13:56	
1,1-Dichloroethene	ug/L	ND	1.0	04/02/25 13:56	
1,2,3-Trichloropropane	ug/L	ND	1.0	04/02/25 13:56	
1,2-Dichlorobenzene	ug/L	ND	1.0	04/02/25 13:56	
1,2-Dichloroethane	ug/L	ND	1.0	04/02/25 13:56	
1,2-Dichloropropane	ug/L	ND	1.0	04/02/25 13:56	
1,4-Dichlorobenzene	ug/L	ND	1.0	04/02/25 13:56	
2-Butanone (MEK)	ug/L	ND	5.0	04/02/25 13:56	
2-Hexanone	ug/L	ND	5.0	04/02/25 13:56	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	04/02/25 13:56	
Acetone	ug/L	ND	25.0	04/02/25 13:56	
Acrylonitrile	ug/L	ND	10.0	04/02/25 13:56	
Benzene	ug/L	ND	1.0	04/02/25 13:56	
Bromochloromethane	ug/L	ND	1.0	04/02/25 13:56	
Bromodichloromethane	ug/L	ND	1.0	04/02/25 13:56	
Bromoform	ug/L	ND	1.0	04/02/25 13:56	
Bromomethane	ug/L	ND	2.0	04/02/25 13:56	v2
Carbon disulfide	ug/L	ND	2.0	04/02/25 13:56	
Carbon tetrachloride	ug/L	ND	1.0	04/02/25 13:56	
Chlorobenzene	ug/L	ND	1.0	04/02/25 13:56	
Chloroethane	ug/L	ND	1.0	04/02/25 13:56	
Chloroform	ug/L	ND	1.0	04/02/25 13:56	
Chloromethane	ug/L	ND	1.0	04/02/25 13:56	
cis-1,2-Dichloroethene	ug/L	ND	1.0	04/02/25 13:56	
cis-1,3-Dichloropropene	ug/L	ND	1.0	04/02/25 13:56	
Dibromochloromethane	ug/L	ND	1.0	04/02/25 13:56	
Dibromomethane	ug/L	ND	1.0	04/02/25 13:56	
Ethylbenzene	ug/L	ND	1.0	04/02/25 13:56	
Iodomethane	ug/L	ND	20.0	04/02/25 13:56	
m&p-Xylene	ug/L	ND	2.0	04/02/25 13:56	
Methylene Chloride	ug/L	ND	5.0	04/02/25 13:56	
o-Xylene	ug/L	ND	1.0	04/02/25 13:56	
Styrene	ug/L	ND	1.0	04/02/25 13:56	
Tetrachloroethene	ug/L	ND	1.0	04/02/25 13:56	v1
Toluene	ug/L	ND	1.0	04/02/25 13:56	
trans-1,2-Dichloroethene	ug/L	ND	1.0	04/02/25 13:56	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

METHOD BLANK: 4758146 Matrix: Water

Associated Lab Samples: 92787163010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	ND ND	1.0	04/02/25 13:56	
trans-1,4-Dichloro-2-butene	ug/L	ND	1.0	04/02/25 13:56	v2
Trichloroethene	ug/L	ND	1.0	04/02/25 13:56	
Trichlorofluoromethane	ug/L	ND	1.0	04/02/25 13:56	
Vinyl acetate	ug/L	ND	2.0	04/02/25 13:56	
Vinyl chloride	ug/L	ND	1.0	04/02/25 13:56	
Xylene (Total)	ug/L	ND	1.0	04/02/25 13:56	
1,2-Dichloroethane-d4 (S)	%	88	70-130	04/02/25 13:56	
4-Bromofluorobenzene (S)	%	93	70-130	04/02/25 13:56	
Toluene-d8 (S)	%	99	70-130	04/02/25 13:56	

LABORATORY CONTROL SAMPLE:	4758147	Cailea	1.00	1.00	0/ D	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualificity
1,1,1,2-Tetrachloroethane	ug/L	20	22.9	115	70-130	
1,1,1-Trichloroethane	ug/L	20	20.1	100	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	22.2	111	70-130	
1,1,2-Trichloroethane	ug/L	20	22.0	110	70-130	
1,1-Dichloroethane	ug/L	20	19.2	96	70-130	
1,1-Dichloroethene	ug/L	20	19.1	95	70-130	
1,2,3-Trichloropropane	ug/L	20	21.3	106	70-130	
1,2-Dichlorobenzene	ug/L	20	23.7	119	70-130	
1,2-Dichloroethane	ug/L	20	18.8	94	70-130	
1,2-Dichloropropane	ug/L	20	20.0	100	70-130	
1,4-Dichlorobenzene	ug/L	20	23.6	118	70-130	
2-Butanone (MEK)	ug/L	40	38.3	96	70-130	
2-Hexanone	ug/L	40	41.9	105	70-130	
4-Methyl-2-pentanone (MIBK)	ug/L	40	38.0	95	70-130	
Acetone	ug/L	40	34.0	85	70-130	
Acrylonitrile	ug/L	100	94.9	95	70-130	
Benzene	ug/L	20	21.5	108	70-130	
Bromochloromethane	ug/L	20	21.8	109	70-130	
Bromodichloromethane	ug/L	20	21.1	105	70-130	
Bromoform	ug/L	20	23.7	119	70-130	
Bromomethane	ug/L	20	16.3	81	70-130 v	/3
Carbon disulfide	ug/L	20	19.8	99	70-130	
Carbon tetrachloride	ug/L	20	21.9	109	70-130	
Chlorobenzene	ug/L	20	22.5	112	70-130	
Chloroethane	ug/L	20	16.1	80	70-130	
Chloroform	ug/L	20	19.7	98	70-130	
Chloromethane	ug/L	20	19.2	96	70-130	
cis-1,2-Dichloroethene	ug/L	20	19.1	96	70-130	
cis-1,3-Dichloropropene	ug/L	20	21.2	106	70-130	
Dibromochloromethane	ug/L	20	23.2	116	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

LABORATORY CONTROL SAMPLE:	4758147					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Dibromomethane	ug/L	20	22.3	112	70-130	
Ethylbenzene	ug/L	20	21.6	108	70-130	
odomethane	ug/L	40	39.5	99	70-130	
n&p-Xylene	ug/L	40	45.0	112	70-130	
Methylene Chloride	ug/L	20	17.7	88	70-130	
o-Xylene	ug/L	20	24.0	120	70-130	
Styrene	ug/L	20	23.4	117	70-130	
Tetrachloroethene	ug/L	20	22.7	114	70-130 v	/1
- oluene	ug/L	20	20.9	105	70-130	
rans-1,2-Dichloroethene	ug/L	20	19.2	96	70-130	
rans-1,3-Dichloropropene	ug/L	20	21.5	108	70-130	
ans-1,4-Dichloro-2-butene	ug/L	20	17.1	86	70-130 v	/3
richloroethene	ug/L	20	22.4	112	70-130	
richlorofluoromethane	ug/L	20	19.1	95	70-130	
inyl acetate	ug/L	40	35.0	87	70-130	
/inyl chloride	ug/L	20	18.3	91	70-130	
(ylene (Total)	ug/L	60	68.9	115	70-130	
2-Dichloroethane-d4 (S)	%			91	70-130	
-Bromofluorobenzene (S)	%			96	70-130	
oluene-d8 (S)	%			96	70-130	

MATRIX SPIKE SAMPLE:	4758148						
		92787914009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	20	13.0	65	73-134	M1
1,1,1-Trichloroethane	ug/L	ND	20	12.3	61	82-143	M1
1,1,2,2-Tetrachloroethane	ug/L	ND	20	13.3	67	70-136	M1
1,1,2-Trichloroethane	ug/L	ND	20	13.1	66	70-135	M1
1,1-Dichloroethane	ug/L	ND	20	11.5	58	70-139	M1
1,1-Dichloroethene	ug/L	ND	20	11.4	57	70-154	M1
1,2,3-Trichloropropane	ug/L	ND	20	13.9	70	71-137	M1
1,2-Dichlorobenzene	ug/L	ND	20	12.3	62	70-133	M1
1,2-Dichloroethane	ug/L	ND	20	11.6	58	70-137	M1
1,2-Dichloropropane	ug/L	ND	20	11.9	60	70-140	M1
1,4-Dichlorobenzene	ug/L	ND	20	12.1	61	70-133	M1
2-Butanone (MEK)	ug/L	ND	40	26.5	66	60-139	
2-Hexanone	ug/L	ND	40	29.0	73	65-138	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	24.6	62	65-135	M1
Acetone	ug/L	ND	40	25.9	65	60-148	
Acrylonitrile	ug/L	ND	100	70.3	70	64-147	
Benzene	ug/L	ND	20	12.7	63	70-151	M1
Bromochloromethane	ug/L	ND	20	13.6	68	70-141	M1
Bromodichloromethane	ug/L	ND	20	12.5	63	70-138	M1
Bromoform	ug/L	ND	20	14.3	71	63-130	
Bromomethane	ug/L	ND	20	9.8	49	15-152	v3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

MATRIX SPIKE SAMPLE:	4758148						
		92787914009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Carbon disulfide	ug/L	ND	20	11.8	59	69-149	M1
Carbon tetrachloride	ug/L	ND	20	13.5	67	70-143	M1
Chlorobenzene	ug/L	ND	20	12.8	64	70-138	M1
Chloroethane	ug/L	ND	20	10.7	53	52-163	
Chloroform	ug/L	ND	20	12.0	60	70-139	M1
Chloromethane	ug/L	ND	20	10.5	53	41-139	
cis-1,2-Dichloroethene	ug/L	ND	20	11.7	59	70-141	M1
cis-1,3-Dichloropropene	ug/L	ND	20	12.1	60	70-137	M1
Dibromochloromethane	ug/L	ND	20	13.4	67	70-134	M1
Dibromomethane	ug/L	ND	20	14.5	72	70-138	
Ethylbenzene	ug/L	ND	20	12.0	60	66-153	M1
Iodomethane	ug/L	ND	40	19.6J	49	20-138	
m&p-Xylene	ug/L	ND	40	24.8	62	69-152	M1
Methylene Chloride	ug/L	ND	20	10.8	54	42-159	
o-Xylene	ug/L	ND	20	12.8	64	70-148	M1
Styrene	ug/L	ND	20	12.5	63	70-135	M1
Tetrachloroethene	ug/L	1.5	20	13.8	62	59-143	
Toluene	ug/L	ND	20	12.3	62	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	11.4	57	70-146	M1
trans-1,3-Dichloropropene	ug/L	ND	20	12.6	63	70-135	M1
trans-1,4-Dichloro-2-butene	ug/L	ND	20	14.8	74	47-135	v1
Trichloroethene	ug/L	ND	20	13.9	65	70-147	M1
Trichlorofluoromethane	ug/L	ND	20	11.9	60	70-148	M1
Vinyl acetate	ug/L	ND	40	22.5	56	49-151	
Vinyl chloride	ug/L	ND	20	10.0	50	70-156	M1
Xylene (Total)	ug/L	ND	60	37.5	63	63-158	MS
1,2-Dichloroethane-d4 (S)	%				94	70-130	
4-Bromofluorobenzene (S)	%				99	70-130	
Toluene-d8 (S)	%				96	70-130	

Date: 04/25/2025 01:52 PM

Parameter	Units	92787914010 Result	Dup Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		ND		_
1,1,1-Trichloroethane	ug/L	ND	ND		
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		
1,1,2-Trichloroethane	ug/L	ND	ND		
1,1-Dichloroethane	ug/L	ND	ND		
1,1-Dichloroethene	ug/L	ND	ND		
1,2,3-Trichloropropane	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,2-Dichloroethane	ug/L	ND	ND		
1,2-Dichloropropane	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
2-Butanone (MEK)	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

SAMPLE DUPLICATE: 4758149 92787914010 Dup Parameter Units Result Result **RPD** Qualifiers ND 2-Hexanone ug/L ND ND 4-Methyl-2-pentanone (MIBK) ug/L ND ND Acetone ug/L ND Acrylonitrile ND ND ug/L Benzene ND ND ug/L Bromochloromethane ug/L ND ND ND Bromodichloromethane ug/L ND Bromoform ND ND ug/L Bromomethane ND ND v2 ug/L ND Carbon disulfide ug/L ND ND Carbon tetrachloride ug/L ND ND Chlorobenzene ug/L ND ND Chloroethane ug/L ND Chloroform ND ND ug/L Chloromethane ND ND ug/L cis-1.2-Dichloroethene ND ND ug/L cis-1,3-Dichloropropene ug/L ND ND ND Dibromochloromethane ug/L ND ND Dibromomethane ug/L ND ND Ethylbenzene ND ug/L ND ug/L ND Iodomethane ND m&p-Xylene ug/L ND ND Methylene Chloride ug/L ND ND o-Xylene ug/L ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND trans-1,3-Dichloropropene ND ug/L trans-1,4-Dichloro-2-butene ND ND ug/L v1 3.0 Trichloroethene 2.9 1 ug/L ND ND Trichlorofluoromethane ug/L Vinyl acetate ND ND ug/L Vinyl chloride ug/L ND ND ND Xylene (Total) ug/L ND 88 1,2-Dichloroethane-d4 (S) % 87 4-Bromofluorobenzene (S) % 93 91 % 98 99 Toluene-d8 (S)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

QC Batch: 928996 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260 MSV Low Level SC

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92790600001

METHOD BLANK: 4772695 Matrix: Water

Associated Lab Samples: 92790600001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	04/14/25 08:01	
1,1,1-Trichloroethane	ug/L	ND	1.0	04/14/25 08:01	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	04/14/25 08:01	
1,1,2-Trichloroethane	ug/L	ND	1.0	04/14/25 08:01	
1,1-Dichloroethane	ug/L	ND	1.0	04/14/25 08:01	
1,1-Dichloroethene	ug/L	ND	1.0	04/14/25 08:01	
1,2,3-Trichloropropane	ug/L	ND	1.0	04/14/25 08:01	
1,2-Dichlorobenzene	ug/L	ND	1.0	04/14/25 08:01	
1,2-Dichloroethane	ug/L	ND	1.0	04/14/25 08:01	
1,2-Dichloropropane	ug/L	ND	1.0	04/14/25 08:01	
1,4-Dichlorobenzene	ug/L	ND	1.0	04/14/25 08:01	
2-Butanone (MEK)	ug/L	ND	5.0	04/14/25 08:01	
2-Hexanone	ug/L	ND	5.0	04/14/25 08:01	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	04/14/25 08:01	
Acetone	ug/L	ND	25.0	04/14/25 08:01	
Acrylonitrile	ug/L	ND	10.0	04/14/25 08:01	
Benzene	ug/L	ND	1.0	04/14/25 08:01	
Bromochloromethane	ug/L	ND	1.0	04/14/25 08:01	
Bromodichloromethane	ug/L	ND	1.0	04/14/25 08:01	
Bromoform	ug/L	ND	1.0	04/14/25 08:01	
Bromomethane	ug/L	ND	2.0	04/14/25 08:01	
Carbon disulfide	ug/L	ND	2.0	04/14/25 08:01	
Carbon tetrachloride	ug/L	ND	1.0	04/14/25 08:01	
Chlorobenzene	ug/L	ND	1.0	04/14/25 08:01	
Chloroethane	ug/L	ND	1.0	04/14/25 08:01	
Chloroform	ug/L	ND	1.0	04/14/25 08:01	
Chloromethane	ug/L	ND	1.0	04/14/25 08:01	
cis-1,2-Dichloroethene	ug/L	ND	1.0	04/14/25 08:01	
cis-1,3-Dichloropropene	ug/L	ND	1.0	04/14/25 08:01	
Dibromochloromethane	ug/L	ND	1.0	04/14/25 08:01	
Dibromomethane	ug/L	ND	1.0	04/14/25 08:01	
Ethylbenzene	ug/L	ND	1.0	04/14/25 08:01	
Iodomethane	ug/L	ND	20.0	04/14/25 08:01	
m&p-Xylene	ug/L	ND	2.0	04/14/25 08:01	
Methylene Chloride	ug/L	ND	5.0	04/14/25 08:01	
o-Xylene	ug/L	ND	1.0	04/14/25 08:01	
Styrene	ug/L	ND	1.0	04/14/25 08:01	
Tetrachloroethene	ug/L	ND	1.0	04/14/25 08:01	
Toluene	ug/L	ND	1.0	04/14/25 08:01	
trans-1,2-Dichloroethene	ug/L	ND	1.0	04/14/25 08:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

METHOD BLANK: 4772695 Matrix: Water

Associated Lab Samples: 92790600001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	ND ND	1.0	04/14/25 08:01	
trans-1,4-Dichloro-2-butene	ug/L	ND	1.0	04/14/25 08:01	
Trichloroethene	ug/L	ND	1.0	04/14/25 08:01	
Trichlorofluoromethane	ug/L	ND	1.0	04/14/25 08:01	
Vinyl acetate	ug/L	ND	2.0	04/14/25 08:01	
Vinyl chloride	ug/L	ND	1.0	04/14/25 08:01	
Xylene (Total)	ug/L	ND	1.0	04/14/25 08:01	
1,2-Dichloroethane-d4 (S)	%	103	70-130	04/14/25 08:01	
4-Bromofluorobenzene (S)	%	101	70-130	04/14/25 08:01	
Toluene-d8 (S)	%	108	70-130	04/14/25 08:01	

LABORATORY CONTROL SAMPLE:	4772696					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		18.3	92	70-130	
1,1,1-Trichloroethane	ug/L	20	19.9	99	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	17.8	89	70-130	
1,1,2-Trichloroethane	ug/L	20	18.7	93	70-130	
1,1-Dichloroethane	ug/L	20	19.5	97	70-130	
1,1-Dichloroethene	ug/L	20	20.9	105	70-130	
1,2,3-Trichloropropane	ug/L	20	17.1	86	70-130	
1,2-Dichlorobenzene	ug/L	20	18.8	94	70-130	
1,2-Dichloroethane	ug/L	20	19.3	97	70-130	
1,2-Dichloropropane	ug/L	20	19.0	95	70-130	
1,4-Dichlorobenzene	ug/L	20	18.0	90	70-130	
2-Butanone (MEK)	ug/L	40	35.2	88	70-130	
2-Hexanone	ug/L	40	35.9	90	70-130	
l-Methyl-2-pentanone (MIBK)	ug/L	40	34.4	86	70-130	
Acetone	ug/L	40	37.3	93	70-130	
Acrylonitrile	ug/L	100	95.5	96	70-130	
Benzene	ug/L	20	19.8	99	70-130	
Bromochloromethane	ug/L	20	20.8	104	70-130	
Bromodichloromethane	ug/L	20	19.3	96	70-130	
Bromoform	ug/L	20	18.5	92	70-130	
Bromomethane	ug/L	20	17.6	88	70-130	
Carbon disulfide	ug/L	20	20.2	101	70-130	
Carbon tetrachloride	ug/L	20	19.7	99	70-130	
Chlorobenzene	ug/L	20	18.8	94	70-130	
Chloroethane	ug/L	20	18.1	91	70-130	
Chloroform	ug/L	20	18.9	94	70-130	
Chloromethane	ug/L	20	20.9	104	70-130	
cis-1,2-Dichloroethene	ug/L	20	19.1	95	70-130	
cis-1,3-Dichloropropene	ug/L	20	19.4	97	70-130	
Dibromochloromethane	ug/L	20	18.7	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

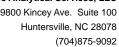
Date: 04/25/2025 01:52 PM

ABORATORY CONTROL SAMPLE:	4772696					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Dibromomethane	ug/L	20	19.5	97	70-130	
thylbenzene	ug/L	20	18.4	92	70-130	
domethane	ug/L	40	34.7	87	70-130	
&p-Xylene	ug/L	40	38.3	96	70-130	
ethylene Chloride	ug/L	20	19.6	98	70-130	
Xylene	ug/L	20	19.6	98	70-130	
yrene	ug/L	20	19.7	98	70-130	
rachloroethene	ug/L	20	18.8	94	70-130	
uene	ug/L	20	18.5	93	70-130	
s-1,2-Dichloroethene	ug/L	20	20.2	101	70-130	
s-1,3-Dichloropropene	ug/L	20	18.9	94	70-130	
ns-1,4-Dichloro-2-butene	ug/L	20	19.8	99	70-130	
chloroethene	ug/L	20	19.9	100	70-130	
chlorofluoromethane	ug/L	20	19.7	99	70-130	
yl acetate	ug/L	40	38.1	95	70-130	
nyl chloride	ug/L	20	19.6	98	70-130	
ene (Total)	ug/L	60	57.9	97	70-130	
Dichloroethane-d4 (S)	%			99	70-130	
romofluorobenzene (S)	%			98	70-130	
uene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	4772698						
		92790632022	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	20	21.9	109	73-134	
1,1,1-Trichloroethane	ug/L	ND	20	24.0	120	82-143	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	21.0	105	70-136	
1,1,2-Trichloroethane	ug/L	ND	20	21.7	109	70-135	
1,1-Dichloroethane	ug/L	ND	20	23.3	117	70-139	
1,1-Dichloroethene	ug/L	ND	20	23.7	118	70-154	
1,2,3-Trichloropropane	ug/L	ND	20	21.1	105	71-137	
1,2-Dichlorobenzene	ug/L	ND	20	21.1	106	70-133	
1,2-Dichloroethane	ug/L	ND	20	22.0	110	70-137	
1,2-Dichloropropane	ug/L	ND	20	23.4	117	70-140	
1,4-Dichlorobenzene	ug/L	ND	20	21.2	106	70-133	
2-Butanone (MEK)	ug/L	ND	40	40.7	102	60-139	
2-Hexanone	ug/L	ND	40	42.7	107	65-138	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	39.9	100	65-135	
Acetone	ug/L	ND	40	44.6	112	60-148	
Acrylonitrile	ug/L	ND	100	111	111	64-147	
Benzene	ug/L	ND	20	24.2	121	70-151	
Bromochloromethane	ug/L	ND	20	24.8	124	70-141	
Bromodichloromethane	ug/L	ND	20	22.4	112	70-138	
Bromoform	ug/L	ND	20	20.9	105	63-130	
Bromomethane	ug/L	ND	20	19.5	98	15-152 v	/3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF


Pace Project No.: 92787163

MATRIX SPIKE SAMPLE:	4772698						
		92790632022	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Carbon disulfide	ug/L	ND	20	23.6	118	69-149	
Carbon tetrachloride	ug/L	ND	20	23.6	118	70-143	
Chlorobenzene	ug/L	ND	20	21.6	108	70-138	
Chloroethane	ug/L	ND	20	21.6	108	52-163	
Chloroform	ug/L	ND	20	22.8	114	70-139	
Chloromethane	ug/L	ND	20	23.6	118	41-139	
cis-1,2-Dichloroethene	ug/L	ND	20	22.4	112	70-141	
cis-1,3-Dichloropropene	ug/L	ND	20	20.8	104	70-137	
Dibromochloromethane	ug/L	ND	20	21.6	108	70-134	
Dibromomethane	ug/L	ND	20	22.7	114	70-138	
Ethylbenzene	ug/L	ND	20	21.8	109	66-153	
lodomethane	ug/L	ND	40	43.6	109	20-138	
m&p-Xylene	ug/L	ND	40	44.3	111	69-152	
Methylene Chloride	ug/L	ND	20	23.0	115	42-159	
o-Xylene	ug/L	ND	20	22.7	112	70-148	
Styrene	ug/L	ND	20	22.1	110	70-135	
Tetrachloroethene	ug/L	ND	20	20.7	103	59-143	
Toluene	ug/L	ND	20	20.9	102	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	23.7	118	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	21.1	105	70-135	
trans-1,4-Dichloro-2-butene	ug/L	ND	20	25.6	128	47-135	
Trichloroethene	ug/L	ND	20	24.4	122	70-147	
Trichlorofluoromethane	ug/L	ND	20	24.0	120	70-148	
Vinyl acetate	ug/L	ND	40	45.8	115	49-151	
Vinyl chloride	ug/L	ND	20	23.6	118	70-156	
Xylene (Total)	ug/L	ND	60	67.0	112	63-158	
1,2-Dichloroethane-d4 (S)	%				101	70-130	
4-Bromofluorobenzene (S)	%				101	70-130	
Toluene-d8 (S)	%				92	70-130	

Date: 04/25/2025 01:52 PM

SAMPLE DUPLICATE: 4772097		92790632021	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		
1,1,1-Trichloroethane	ug/L	ND	ND		
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		
1,1,2-Trichloroethane	ug/L	ND	ND		
1,1-Dichloroethane	ug/L	ND	ND		
1,1-Dichloroethene	ug/L	ND	ND		
1,2,3-Trichloropropane	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,2-Dichloroethane	ug/L	ND	ND		
1,2-Dichloropropane	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
2-Butanone (MEK)	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

		92790632021	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
2-Hexanone	ug/L	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		
Acetone	ug/L	ND	ND		
Acrylonitrile	ug/L	ND	ND		
Benzene	ug/L	ND	ND		
Bromochloromethane	ug/L	ND	ND		
Bromodichloromethane	ug/L	ND	ND		
Bromoform	ug/L	ND	ND		
Bromomethane	ug/L	ND	ND		v2
Carbon disulfide	ug/L	ND	ND		
Carbon tetrachloride	ug/L	ND	ND		
Chlorobenzene	ug/L	ND	ND		
Chloroethane	ug/L	ND	ND		
Chloroform	ug/L	ND	ND		
Chloromethane	ug/L	ND	ND		
cis-1,2-Dichloroethene	ug/L	ND	ND		
cis-1,3-Dichloropropene	ug/L	ND	ND		
Dibromochloromethane	ug/L	ND	ND		
Dibromomethane	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
odomethane	ug/L	ND	ND		
n&p-Xylene	ug/L	ND	ND		
Methylene Chloride	ug/L	ND	ND		
o-Xylene	ug/L	ND	ND		
Styrene	ug/L	ND	ND		
Tetrachloroethene	ug/L	ND	ND		
Toluene	ug/L	ND	ND		
rans-1,2-Dichloroethene	ug/L	ND	ND		
trans-1,3-Dichloropropene	ug/L	ND	ND		
trans-1,4-Dichloro-2-butene	ug/L	ND	ND		
Trichloroethene	ug/L	ND	ND		
Trichlorofluoromethane	ug/L	ND	ND		
Vinyl acetate	ug/L	ND	ND		
Vinyl chloride	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	103	100		
4-Bromofluorobenzene (S)	%	94	99		
Toluene-d8 (S)	%	106	100		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

QC Batch: 927030 Analysis Method: EPA 8011

QC Batch Method: EPA 8011 Analysis Description: GCS 8011 EDB DBCP

Laboratory: Pace Analytical Services - Charlotte

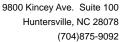
Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

 $92787163008,\,92787163009,\,92787163010,\,92787163011$

METHOD BLANK: 4761668 Matrix: Water

Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

92787163008, 92787163009, 92787163010, 92787163011


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	ND ND	0.021	04/03/25 15:24	
1,2-Dibromoethane (EDB)	ug/L	ND	0.021	04/03/25 15:24	
1-Chloro-2-bromopropane (S)	%	126	60-140	04/03/25 15:24	

LABORATORY CONTROL SAMPLE &	LCSD: 4761669		47	61670						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	0.26	0.30	0.30	117	115	60-140	2	20	
1,2-Dibromoethane (EDB)	ug/L	0.26	0.32	0.31	122	119	60-140	3	20	
1-Chloro-2-bromopropane (S)	%				127	129	60-140			

MATRIX SPIKE & MATRIX SPIKE		4761673									
			MS	MSD							
	927	787163002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dibromo-3-chloropropane	ug/L	ND	0.26	0.26	0.30	0.28	115	107	60-140	8	
1,2-Dibromoethane (EDB)	ug/L	ND	0.26	0.26	0.32	0.29	123	111	60-140	10	
1-Chloro-2-bromopropane (S)	%						131	119	60-140		

SAMPLE DUPLICATE: 4761671					
		92787163001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L		ND		
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	113	114		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

QC Batch: 929301

QC Batch Method: EPA 8011 Analysis Method:

Analysis Description:

GCS 8011 EDB DBCP

EPA 8011

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92790600001

METHOD BLANK: 4774034

Date: 04/25/2025 01:52 PM

Matrix: Water

Associated Lab Samples: 92790600001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	ND	0.020	04/15/25 22:40	
1,2-Dibromoethane (EDB)	ug/L	ND	0.020	04/15/25 22:40	
1-Chloro-2-bromopropane (S)	%	106	60-140	04/15/25 22:40	

LABORATORY CONTROL SAMPLE &	•	47	774036	•	•	•				
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	0.25	0.26	0.24	106	96	60-140	9	20	
1,2-Dibromoethane (EDB)	ug/L	0.25	0.28	0.25	112	102	60-140	9	20	
1-Chloro-2-bromopropane (S)	%				109	100	60-140			

MATRIX SPIKE & MATRIX SPIKE	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4774038 4774039										
			MS	MSD							
	927	790727014	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2-Dibromo-3-chloropropane	ug/L	ND	0.25	0.25	0.27	0.27	108	109	60-140	1	
1,2-Dibromoethane (EDB)	ug/L	ND	0.25	0.25	0.27	0.27	110	109	60-140	0	
1-Chloro-2-bromopropane (S)	%						108	109	60-140		

SAMPLE DUPLICATE: 4774037

		92790727013	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	ND	ND		
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1-Chloro-2-bromopropane (S)	%	90	96		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

QC Batch: 928880 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: WC 6020B MET

Laboratory: Pace Analytical Services - West Columbia

Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

 $92787163008,\,92787163009,\,92787163010,\,92787163011$

METHOD BLANK: 4772073 Matrix: Water

Associated Lab Samples: 92787163001, 92787163002, 92787163003, 92787163004, 92787163005, 92787163006, 92787163007,

92787163008, 92787163009, 92787163010, 92787163011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	ND	2.0	04/15/25 21:23	_
Arsenic	ug/L	ND	10.0	04/15/25 21:23	
Barium	ug/L	ND	5.0	04/15/25 21:23	
Beryllium	ug/L	ND	1.0	04/15/25 21:23	
Cadmium	ug/L	ND	1.0	04/15/25 21:23	
Chromium	ug/L	ND	5.0	04/15/25 21:23	
Cobalt	ug/L	ND	5.0	04/15/25 21:23	
Copper	ug/L	ND	5.0	04/15/25 21:23	
Lead	ug/L	ND	5.0	04/15/25 21:23	
Nickel	ug/L	ND	5.0	04/15/25 21:23	
Selenium	ug/L	ND	10.0	04/15/25 21:23	
Silver	ug/L	ND	5.0	04/15/25 21:23	
Thallium	ug/L	ND	0.50	04/15/25 21:23	
Vanadium	ug/L	ND	5.0	04/15/25 21:23	
Zinc	ug/L	ND	10.0	04/15/25 21:23	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	100	94.4	94	80-120	
Arsenic	ug/L	100	84.9	85	80-120	
Barium	ug/L	100	98.0	98	80-120	
Beryllium	ug/L	100	94.1	94	80-120	
Cadmium	ug/L	100	95.5	95	80-120	
Chromium	ug/L	100	101	101	80-120	
Cobalt	ug/L	100	103	103	80-120	
Copper	ug/L	100	108	108	80-120	
Lead	ug/L	100	97.3	97	80-120	
Nickel	ug/L	100	101	101	80-120	
Selenium	ug/L	100	89.1	89	80-120	
Silver	ug/L	100	97.4	97	80-120	
Thallium	ug/L	100	97.5	98	80-120	
Vanadium	ug/L	100	99.3	99	80-120	
Zinc	ug/L	100	99.4	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPLICAT	E: 47720	75		4772076						
			MS	MSD							
	927	787163009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
Antimony	ug/L	ND	100	100	97.3	95.8	97	96	75-125		
Arsenic	ug/L	ND	100	100	94.2	92.8	94	93	75-125	2	
3arium	ug/L	52.6	100	100	150	149	98	96	75-125	1	
Beryllium	ug/L	ND	100	100	96.9	96.1	97	96	75-125	1	
Cadmium	ug/L	ND	100	100	101	99.1	101	99	75-125	2	
Chromium	ug/L	ND	100	100	99.7	98.6	99	98	75-125	1	
Cobalt	ug/L	ND	100	100	103	102	102	101	75-125	1	
Copper	ug/L	ND	100	100	109	108	108	107	75-125	1	
_ead	ug/L	ND	100	100	96.4	96.2	96	96	75-125	0	
Nickel	ug/L	ND	100	100	101	100	100	99	75-125	1	
Selenium	ug/L	ND	100	100	102	102	101	102	75-125	1	
Silver	ug/L	ND	100	100	97.1	94.8	97	95	75-125	2	
Γhallium	ug/L	ND	100	100	97.1	96.9	97	97	75-125	0	
⁄anadium	ug/L	ND	100	100	100	98.4	99	97	75-125	2	
Zinc	ug/L	19.7	100	100	129	127	109	108	75-125	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

QC Batch: 929349 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: WC 6020B MET

Laboratory: Pace Analytical Services - West Columbia

Associated Lab Samples: 92790600001

METHOD BLANK: 4774198 Matrix: Water

Associated Lab Samples: 92790600001

		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Antimony	ug/L	ND	2.0	04/17/25 14:13		
Arsenic	ug/L	ND	10.0	04/17/25 14:13		
Barium	ug/L	ND	5.0	04/17/25 14:13		
Beryllium	ug/L	ND	1.0	04/17/25 14:13		
Cadmium	ug/L	ND	1.0	04/17/25 14:13		
Chromium	ug/L	ND	5.0	04/17/25 14:13		
Cobalt	ug/L	ND	5.0	04/17/25 14:13		
Copper	ug/L	ND	5.0	04/17/25 14:13		
ead	ug/L	ND	5.0	04/17/25 14:13		
lickel	ug/L	ND	5.0	04/17/25 14:13		
Selenium	ug/L	ND	10.0	04/17/25 14:13		
Silver	ug/L	ND	5.0	04/17/25 14:13		
⁻ hallium	ug/L	ND	0.50	04/17/25 14:13		
/anadium	ug/L	ND	5.0	04/17/25 14:13		
Zinc	ug/L	ND	10.0	04/17/25 14:13		

LABORATORY CONTROL SAMPLE:	4774199					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	100	97.9	98	80-120	
Arsenic	ug/L	100	102	102	80-120	
Barium	ug/L	100	97.6	98	80-120	
Beryllium	ug/L	100	97.1	97	80-120	
Cadmium	ug/L	100	97.3	97	80-120	
Chromium	ug/L	100	105	105	80-120	
Cobalt	ug/L	100	109	109	80-120	
Copper	ug/L	100	109	109	80-120	
Lead	ug/L	100	107	107	80-120	
Nickel	ug/L	100	103	103	80-120	
Selenium	ug/L	100	101	101	80-120	
Silver	ug/L	100	103	103	80-120	
Thallium	ug/L	100	105	105	80-120	
Vanadium	ug/L	100	102	102	80-120	
Zinc	ug/L	100	107	107	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 47742	00		4774201						
			MS	MSD							
	927	790321026	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Antimony	ug/L	ND	100	100	101	103	101	103	75-125		
Arsenic	ug/L	ND	100	100	99.8	98.8	99	98	75-125	1	
3arium	ug/L	459	100	100	547	563	88	104	75-125	3	
Beryllium	ug/L	ND	100	100	101	100	101	100	75-125	1	
Cadmium	ug/L	ND	100	100	101	102	101	102	75-125	1	
Chromium	ug/L	ND	100	100	102	102	100	100	75-125	0	
Cobalt	ug/L	40.4	100	100	143	141	102	100	75-125	1	
Copper	ug/L	ND	100	100	99.7	101	98	100	75-125	2	
-ead	ug/L	ND	100	100	101	104	101	103	75-125	2	
Nickel	ug/L	ND	100	100	87.0	89.1	85	87	75-125	2	
Selenium	ug/L	ND	100	100	101	98.4	100	97	75-125	2	
Silver	ug/L	ND	100	100	102	105	102	105	75-125	3	
- Thallium	ug/L	ND	100	100	102	100	101	100	75-125	1	
/anadium	ug/L	ND	100	100	103	101	101	100	75-125	1	
Zinc .	ug/L	ND	100	100	102	101	100	100	75-125	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/25/2025 01:52 PM

1q	The continuing calibration verification (CCV) for this analyte is above laboratory acceptance limits. The analyte was not
3	detected above the reporting limit in the associated sample.
IK	The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated
	samples may be biased high.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.

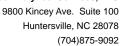
The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

(704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92787163001	MW-1R	EPA 8011	927030	EPA 8011	927076
2787163002	MW-7R	EPA 8011	927030	EPA 8011	927076
2787163003	MW-6	EPA 8011	927030	EPA 8011	927076
2787163004	TMW-11	EPA 8011	927030	EPA 8011	927076
2787163005	MW-2RR	EPA 8011	927030	EPA 8011	927076
92787163006	MW-3	EPA 8011	927030	EPA 8011	927076
2787163007	MW-5	EPA 8011	927030	EPA 8011	927076
2787163008	MW-4R	EPA 8011	927030	EPA 8011	927076
2787163009	CANNONS CREEK	EPA 8011	927030	EPA 8011	927076
2787163010	TMW-10	EPA 8011	927030	EPA 8011	927076
2787163011	TMW-9	EPA 8011	927030	EPA 8011	927076
2790600001	MW-8	EPA 8011	929301	EPA 8011	929497
2787163001	MW-1R		927364		
2787163002	MW-7R		927364		
2787163003	MW-6		927364		
2787163004	TMW-11		927364		
2787163005	MW-2RR		927364		
2787163006	MW-3		927364		
2787163007	MW-5		927364		
2787163008	MW-4R		927364		
2787163009	CANNONS CREEK		927364		
2787163010	TMW-10		927364		
2787163011	TMW-9		927364		
2790600001	MW-8				
2787163001	MW-1R	EPA 8260D	925317		
2787163002	MW-7R	EPA 8260D	925317		
2787163003	MW-6	EPA 8260D	925317		
2787163004	TMW-11	EPA 8260D	925317		
2787163005	MW-2RR	EPA 8260D	925317		
2787163006	MW-3	EPA 8260D	925317		
2787163000 2787163007	MW-5	EPA 8260D	925317		
2787163007 2787163008	MW-4R	EPA 8260D	925317		
2787163008 2787163009	CANNONS CREEK	EPA 8260D	925317		
2787163010	TMW-10	EPA 8260D	926315		
2787163011	TMW-9	EPA 8260D	925317		
2787163012	TRIP BLANK	EPA 8260D	925317		
2790600001	MW-8	EPA 8260D	928996		
2787163001	MW-1R	EPA 3005A	928880	EPA 6020B	929631
2787163002	MW-7R	EPA 3005A	928880	EPA 6020B	929631
2787163003	MW-6	EPA 3005A	928880	EPA 6020B	929631
2787163004	TMW-11	EPA 3005A	928880	EPA 6020B	929631
	MW-2RR	EPA 3005A	928880	EPA 6020B	929631
2/0/103UU3					
	MW-3	EPA 3005A	928880	EPA 6020B	929031
2787163005 2787163006 2787163007	MW-3 MW-5	EPA 3005A EPA 3005A	928880 928880	EPA 6020B EPA 6020B	929631 929631

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CITY OF NEWBERRY LF

Pace Project No.: 92787163

Date: 04/25/2025 01:52 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92787163009	CANNONS CREEK	EPA 3005A	928880	EPA 6020B	929631
92787163010	TMW-10	EPA 3005A	928880	EPA 6020B	929631
92787163011	TMW-9	EPA 3005A	928880	EPA 6020B	929631
92790600001	MW-8	EPA 3005A	929349	EPA 6020B	929991

REPORT OF LABORATORY ANALYSIS

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

NUMBER STREET					
TARRIED REPORTS	Effective Date: 05/24/2024	-			
Sample Condi Upon Receip Courier: Commercial	eiving samples: Eden Greenwood H tion Client Name: Fed Ex UPS Pace Sent? Yes No Seals I	ntact?		Raleigh Pro	Date/Initials Person Examining Contents: M/N 3/2
Thermometer:	n ID: 93T090	Type of Ice	:: Æ∫v	Vet ∏Blue	45.45
Did samples o	Correction Factor: Add/Subtract (°C) rected (°C): Soil (N/A, water sample) riginate in a quarantine zone within the U	0.7		or SC	Temp should be above freezing to 6°C ☐ Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐ Yes
(check maps).					Comments/Discrepancy:
Chain of Cus	tody Present?	∭Yes	□No	□n/a	1.
Samples Arr	ved within Hold Time?		□No	□N/A	2.
Short Hold	ime Analysis (<72 hr.)?	□Yes	MNo	□N/A	3.
Rush Turn A	round Time Requested?	□Yes	No	□N/A	4.
Sufficient Vo	olume?	Yes	□No	□N/A	5.
Correct Con	tainers Used?	⊠Yes	□No	□N/A	6.
-Pace Cor	tainers Used?	∑Yes	□No	□N/A	
Containers I	ntact?	∑Yes	□No	□N/A	7.
Dissolved ar	alysis: Samples Field Filtered?	□Yes	MNo	□N/A	8.
Sample Labe	els Match COC?	Yes	□No	□N/A	9.
-Includes	Date/Time/ID/Analysis Matrix:	WT	-		
Headspace i	n VOA Vials (>5-6mm)?	□Yes	No	□N/A	10.
Trip Blank P	resent?	∑Yes	□No	□N/A	11.
	ustody Seals Present?	∑Yes	□No	□N/A	
OMMENTS/SAMP	LE DISCREPANCY			H	Field Data Required? ☐Yes ☐No
LIENT NOTIFICATIO	n/resolution			to	t ID of split containers:
Person contacted	l:			Date/Time:	· · · · · · · · · · · · · · · · · · ·

Page 60 of 78

Project Manager SCURF Review:

Project Manager SRF Review:

Sample Receiving Non-Conformance Form (NCF) Evaluated by: Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Client: ALLIANCE CONSULTING ENGINEERS Here WO#92787163 NEWBERRY 1. If Chain-of-Custody (COC) is not received: contact client and if necessary, fill out a COC and indicate that it was filled out by lab personnel. Note issues on this NCF. 2. If COC is incomplete, check applicable issues below and add details where appropriate: Samples listed on COC do not match samples Analyses or analytes: missing or Collection date/time missing or received (missing, additional, etc.) clarification needed incorrect Sample IDs on COC do not Required signatures are missing Required trip blanks were not received match sample labels Comments/Details/Other Issues not listed above: RECEIVED AN EXTRA SAMPLE. ID "MW-8" @ 1645 3/25/25 3. Sample integrity issues: check applicable issues below and add details where appropriate: Samples: Condition needs to be brought to Preservation: Improper lab personnel's attention (details below) Samples: Past holding time Temperature: not within acceptance criteria (typically 0-6C) Samples: Not field filtered Containers: Broken or compromised Samples: Insufficient volume Temperature: Samples arrived frozen Containers: Incorrect received Custody Seals: Missing or compromised on Samples: Cooler damaged or samples, trip blanks or coolers Vials received with improper headspace compromised Samples: contain chlorine or Packing Material: Insufficient/Improper sulfides Comments/Details: 4. If Samples not preserved properly and Sample Receiving adjusts pH, add details below: Amount/type pres added: Sample ID: Date/Time: Lot # of pres added: Initial and Final pH: Preserved by: Amount/type pres added: Sample ID: Date/Time: Lot # of pres added: Initial and Final pH: Preserved by: Amount/type pres added: Date/Time: Sample ID: Lot# of pres added: Initial and Final pH: Preserved by: 5. Client Contact: If client is contacted for any issue listed above, fill in details below: Contacted per: Client: PM Initials: Date/Time: Client Comments/Instructions:

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project #

WO#:92787163

PM: EDB

Due Date: 04/09/25

CLIENT: 92-Alliance

aboratory Receiving Location: Asheville Eden Greenwood Huntersville Raleigh Mechanicsville Atlanta Kernersville																												
H	11 au	1	Cons	11/10	<u>م</u> ا	rofile	EZIDI	rcle or	1e)	23	927	0	lotes_	_														
BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	8P4Z-125 mL Plastic 2N Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HC! (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mt Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2504 (9.3-9.7)	AGDU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mt. Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
						1.5																						
						\																						
						17							/									-						
		-				1		7																				
						1										6							j.					
						1			2				/		/	6												
						1					/			1	1	6												
/				/	Ζ,	1	<u> </u>	/			/		/	/	/	,								/	/			
/				/	/						/	71	/		/													
/				/	\angle	7			*				/											4				
-						1							-		/	-								7				
						//		$\langle \cdot \rangle$								-							_				X	
						/i							7			م								7				
/					/	1	/						/		/	6								1	1			
/				1	/	1	1				1		1	1	1	2								1	1			
	_A	Allian	Allians	Alliane Cons	Alliane Consultin	Alliane Consulting P	Alliana Consulting Profile	BP3U-250 mL Plastic Unpreserved (N/A) (C+) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic HNO3 (pH < 2) (C+) BP3N-250 mL plastic AN Acetate & NaOH (>9)	BP3U-250 mL Plastic Unpreserved (N/A) (C+) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic HNO3 (pH < 2) (C+) BP3N-250 mL plastic AN Acetate & NaOH (>9) BP4B-125 mL Plastic NaOH (pH > 12) (C+) BP4B-125 mL Plastic NaOH (pH > 12) (C+) BP4B-125 mL Plastic NaOH (pH > 12) (C+)	BP3U-250 mL Plastic Unpreserved (N/A) (Ci-) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic HXSO4 (pH < 2) (Ci-) BP4S-125 mL Plastic AACetate & NaOH (>9) BP4S-125 mL Plastic NaOH (pH > 12) (Ci-) BP4B-125 mL Plastic NaOH (pH > 12) (Ci-)	BP3U-250 mL Plastic Unpreserved (N/A) (C+) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-) BP4S-125 mL Plastic ACEtate & NaOH (>9) WGFU-Wide-mouthed Glass Jar Unpreserved WGFU-Wide-mouthed Glass Jar Unpreserved AG1U-1 liter Amber Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A) (Ci-) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic HX504 (pH < 2) (Ci-) BP4S-125 mL Plastic Acetate & NaOH (>9) WGFU-Wide-mouthed Glass jar Unpreserved AG1U-1 liter Amber Unpreserved (N/A) (Ci-) AG1U-1 liter Amber HCI (pH < 2) AG1U-1 liter Amber HCI (pH < 2)	BP3U-250 mL Plastic Unpreserved (N/A) (C+) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic HNO3 (pH < 2) (Cl-) BP4S-125 mL Plastic Acetate & NaOH (>9) BP4B-125 mL Plastic Acetate & NaOH (>9) WGFU-wide-mouthed Glass jar Unpreserved AG1U-1 liter Amber Unpreserved (N/A) (Cl-) AG3U-250 mL Amber Unpreserved (N/A) (Cl-) AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A) (C+) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP3N-250 mL Plastic Unpreserved (N/A) BP3N-250 mL Plastic HNO3 (pH < 2) (Cl-) BP3N-250 mL Plastic Acetate & NaOH (>9) BP42-125 mL Plastic Acetate & NaOH (>9) BP43-125 mL Plastic Acetate & NaOH (>9) BP44-125 mL Plastic Acetate Ac	BP3U-250 mL Plastic Unpreserved (N/A) (C+) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP3N-250 mL Plastic Unpreserved (N/A) BP4S-125 mL Plastic Anderate & NaOH (>9) BP4S-125 mL Plastic Ander (PH > 12) (Cl-) BP4S-125 mL Plastic Ander Unpreserved (N/A) (Cl-) AG1U-1 liter Amber Unpreserved (N/A) (Cl-) AG3U-250 mL Amber Unpreserved (N/A) (Cl-) AG3S-250 mL Amber H2504 (PH < 2) AG3S-250 mL Amber H2504 (PH < 2) SP	BP3U-250 mL Plastic Unpreserved (N/A) (Ci-) BP3U-250 mL Plastic Unpreserved (N/A) BP1U-1 liter Plastic Unpreserved (N/A) BP4S-125 mL Plastic Unpreserved (N/A) BP4S-125 mL Plastic Ander (Ph > 12) (Ci-) AG1U-1 liter Amber Unpreserved (N/A) (Ci-) AG3U-250 mL Amber H2SO4 (Ph < 2) AG3S-250 mL Amber H2SO4 (Ph < 2) AG3S-250 mL Amber H2SO4 (Ph < 2) AG3S-250 mL Amber NH4Cl (N/A)(Ci-)	SP3U-358 mt Plastic Unpreserved (N/A)	BP3U-350 mL Plastic Unpreserved (N/A) SP3U-350 mL Plastic Unpreserved (N/A) SP3U-350 mL Plastic Unpreserved (N/A) SP3U-31 mL Plastic Unpreserved (N/A) SP3U-330 mL Amber H2504 (PN - 2) AG3B-350 mL Amber H3504 (PN - 2) AG3B-350	SPR3U-230 mL Plastic Unpreserved (N/A)	BP3U-350 mL Plastic Unpreserved (N/A) BP3U	BP3U-35 m. Plastic Unpreserved [N/A] Ch.	BB3U-350 mt Plastic Unpreserved [N/A] PB3U-350 mt Plastic Unpreserved [N/A] PB3U	BP3U-350 mL Plastic Unpreserved (N/A) Ch.	Part - 350 m. Pastic Unpreserved (N/A) Part - 310 m. Pastic Unpreserved (N	BP9U-350 mt, Plastic Unpreserved (NA) DP9U-350 mt, Plastic Unpreserved (NA) DP9U	BPBU-350 mt Pastic Unpreserved [V/A]	Babu-350 m. Pasic Unipreserved (N/A)	1990-35 m. Pastic Unpreserved (NA) 1990-350 m. Pastic Unpreserved (NA) 1990-350 m. Pastic Unpreserved (NA) 1990-350 m. Pastic Unpreserved (NA) 1991-31 m. Pastic Unpreserved (NA) 1991-3

	pH Adjustment Log for Preserved Samples													
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#								
	-													

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

*Check mark top half of box if pH and/or dechloring	nation is verified and within the
acceptance range for preservation samples.	

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- **Bottom half of box is to list number of bottles
- ***Check all unpreserved Nitrates for chlorine

Pro	ject	#
,,,,	Jece	11

WO#92787163

	aboratory Receiving Location: Asheville																												
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 [pH < 2]	AG3S-250 mL Amber H25O4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)[Cl-]	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
СС			-		-		WC										CH												
1	1						X				,			/			6												
2	/		-		/									1															
3	/		8		/											/													
4	/				/			1	1														=						
5					1				1			/																	+
6									1				-												1				
7					/																								
8														1															
9												/		1															
10	/																												
11																				+									
12	1						A	1	A			1			A	A													

	pH Adjustment Log for Preserved Samples													
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#								
			8											
					+1									
				-										

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace

Street Address:

1201 Main St

Alliance Consulting Engineers, Inc.

Contact/Report To:

Courtney Brooks

864-284-1740 cbrooks@alliancece.com

Phone #:

Company Name

Site Collection Info/Facility ID (as applicable):

Time Zone Collected:

Ā

] PT

Z Z

_ _

19[]

County / State origin of sample(s):

South Carolina

Reportable [] Yes

oN[]

applicable):

ourchase Order # (if

ap@alliancece.com Accounts Payable

Regulatory Program (DW, RCRA, etc.) as applicable:

Rush (Pre-approval required):
] Same Day [] 1 Day [] 2 Day [] 3 Day [] Other

[]LevelII []LevelIII []LevelIV

Project Name:

Newberry Co. Landfill

ustomer Project #:

Columbia, SC 29202

Cc E-Mail: E-Mail:

nvoice To: voice E-Mail:

B), Vapor (V), Surface Water (SW),Sediment (SED), Sludge (SL), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT)

Date Results

Customer Sample ID

Matrix *

Comp /

Composite Start

Collected or Composite End

Date

Time

Date

Time

Cont.

Results Res. Chlorine Units

8011 EDB/DBCP

SC App IV 8260 VOCs

24.25

phol

| Other | Othe

Analysis:

Field Filtered (if applicable): [] Yes [] No

DW PWSID # or WW Permit # as applicable

3W -

JR

3 ٦

> 1 1

24.25

1138

J ٦

N W

W

. 25

71

W

W W

W

9 Grab

3

6

3/2

3 3

9

9 9

5

JM.

9800 Kincey Ave. Suite 100, Huntersville, NC 28078 Pace Analytical Charlotte Pace® Location Requested (City/State):

CHAIN-OF-CUSTODY Analytical Request Document

Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields

WO#92787163

LAB USE ONLY- Affix Workorder/Login Label Here

Scan QR Code for instructions

Page 64 of 78

		M I	1		er																				
		M			narks /	-	_	-	-	-	-	-	~	 -	SC A	op IV N	letals 6	010/602	20				Ident		
Date/Time:	Date/Timpe:	Date/Time:	Date/Time:	Thermometer ID:	Special										Trip B	llank					Þ		ify Cor		Spec
me: /	96, Impe:	P .	Pate/Time:	To meter II	Condi																nalysis		tainer		ify Cor
	25	ate/Time:	325	0	tions /										T =						Analysis Requested		Preser		Specify Container Size **
	- (1	_	Corr	Possib										Ì						sted		vative		Size **
	144	22	07	O rection F.	emarks / Special Conditions / Possible Hazards:																1		Identify Container Preservative Type***	\vdash	ā
	47	0	3	Correction Factor (°C):	rds:										-								•	\vdash	
-		Deli	Trac												1										
Page:	-	Delivered by:	Tracking Number:	Obs. Temp. ("C) 火 み		_	_								ļ			Use On	ly		Z e	Na H2	:	Ter	17.0
1] FedEX		nber:	(c)											S	Prelog EZ 3	Profile /	Table #:	AcctN	Proj. Mgr: Eben Bu	МеОН, (11) Other	504, (4) HS04, (8	Preserv	raCore,	ontaine
	-] In- Person		Cor											Sample	/ Bott	/Tem	#	um/C	Proj. Mgr: Eben Buchanan	Other	HCI, (5)) Sod. TI	ative Ty	(9) 90ml	r Size: (1
of] UPS	son [rected T											Com	Prelog / Bottle Ord. ID: EZ 3239270	Template:		AcctNum / Client ID:	anan		NaOH, (6 niosulfat	pes: (1)	TerraCore, (9) 90mL, (10) Other) 11, (2)
2	- 1] Courier		Corrected Temp. ("C) イ・イ											Comment	ë			••		3	6) Zn Acı e, (9) As	None, (2	ther	500mL,
6.50] Other	rier																				H2SO4, (4) HCl, (5) NaOH, (6) Zn Acetate, (7) NaHSO4, (8) Sod. Thiosulfate, (9) Ascorbic Acid, (10)	••• Preservative Types: (1) None, (2) HNO3, (3)	Encore	**Container Size: (1) 1L, (2) 500mL, (3) 250mL, (4)
				√on Ice:						V					Prese	rvation i	non-conf	ormance i	dentifi	ed for) cid, (10)	(3)	(0)	nL, (4)
							-							 _											

OWD

ZOWARZS

1220

Selection (Signature)

大田の町で

fpany: (Signa

620

77

26MAR 25/0730

Additional Instructions from Pace*:

MM. 10

reck

5

9 9 9

3

9

(Printed Name)

グス

01910

Collected By:

Signature:

35

- HR

35.

SI

3

1

1

W

.24.25 24 25

1403

1

S

W

W

W

24.25

1426

. 24.25

1440

W

. 24.25

1600

1 7

Customer Re

Coolers:

N

5

9

1

W

1340

3

S

72

1301

7 ١

S

24.25 .24

1249

3

32

34.

2RR W

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace* Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/ Additional Instructions from Pace*: B), Vapor (V), Surface Water (SW),Sediment (SED), Sludge (SL), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT) Site Collection Info/Facility ID (as applicable): Project Name: Street Address: Company Name: []LevelII []LevelIII []LevelIV ime Zone Collected: [] AK ustomer Project [] Other | nequester. | Netrix box below): Drinking Water (DW), Ground Water (GW), Waste Water (WW), Product (P), Soil/Soild (SS), Oil (OL), Wipe (WP), Tissue (TS), Bioassa ME] EQUIS Blask Customer Sample ID Newberry Co. Landfill 1201 Main St Alliance Consulting Engineers, Inc. Pace Analytical Charlotte Columbia, SC 29202 Suite 2020 9800 Kincey Ave. Suite 100, Huntersville, NC 28078 Pace® Location Requested (City/State):] PT amo IMT Regulatory Program (DW, RCRA, etc.) as applicable: Date Results [] Same Day [<u></u> Matrix * E]1 Day []2 Day []3 Day []Other Ē Rush (Pre-approval required): SPUNDES 2 CAMPARZS P Comp / 9 Grab **CHAIN-OF-CUSTODY Analytical Request Document** County / State origin of sample(s): E-Mail: Cc E-Mail: Contact/Report To: applicable): ourchase Order # (if nvoice E-Mail: nvoice To: Phone #: Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields Date Composite Start 0730 0221 LHAI Signature: (Printed Name) Collected By: 1 Time Reportable [] Yes Courtney Brooks ap@alliancece.com Accounts Payable cbrooks@alliancece.com Field Filtered (if applicable): [] Yes [] No Collected or Composite End 24.25 24.25 Date かから South Carolina DW PWSID # or WW Permit # as applicable 1048 150 02015 Time 2 Cont. Results Res. Chlorine Units Customer Remarks / Special Conditions / Possible Hazards: 8011 EDB/DBCP W SC App IV 8260 VOCs SC App IV Metals 6010/6020 Identify Container Preservative Type *** P3 TO90 ZGNARZZ ELMAR 25 Trip Blank Specify Container Size ** NO#92787163 LAB USE ONLY- Affix Workorder/Login Label Here 25 Scan QR Code for instructions 0730 Correction Factor (*C): 677 0 ENV-FRM-CORQ-0019_v02_110123 @ Tracking Number Delivered by: [] In- Person Page: Obs. Temp. (*C) Lab Use Only
Table #: *** Preservative Types: (1) None, (2) HNO3, (3) H2SO4, (4) HCI, (5) NaOH, (6) Zn Acetate, (7) **Container Size: (1) 1L, (2) 500mL, (3) 250mL, (4) 125mL, (5) 100mL, (6) 40mL vial, (7) EnCore, (8) MeOH, (11) Other TerraCore, (9) 90mL, (10) Other NaHSO4, (8) Sod. Thiosulfate, (9) Ascorbic Acid, (10)] FedEx 9936 Profile / Template: EZ 3239270 Eben Buchanan Prelog / Bottle Ord. ID: AcctNum / Client ID: Proj. Mgr: 2 Sample Comment Corrected Temp. ("C) JUPS] Other Z^o Page 65 of 78 Preservation non-conformance identified for

Pace Analytical"

Document Name: Field data Sheet

Date Issued: November 27, 2018 Page: 1 of 2 |

Document Number: F-CAR-FLD-001-rev.02

Issuing Authority: Pace Huntersville Quality
Office

Client: A	CE		Locati	ion: Newl	perry	Pr	oject #: Newbe.	cry Lf	
Name and	Affiliation	n (Sampler(s):_	bristo	rbin / Pa	ce.	Field Data S	Sheet Review:		
		n (Inspector):		/	1	Data: 1	5-24-25	Ву:	LXV
Well Info			•			Date:	3-(4-()	Бу:	0- 11
Well ID: _	MM - 7	LR		Well Locke	ed: (YB	S / NO)			
Well Dian	neter:	0		Constructi	on: $(P\nabla C_i)$	/Steel/Stair	nless Steel)		
Total Well	Depth: _	00.41	ft	Multi Facto	or*: 0.16	3 [*(Radius,	/12)2 x 3.14 x 7.48]		
Static Wat	er Level:_	34.04	t	Casing Vo	lume:4	.3	gallons		,0
Height of	Water Col	umn: 26.37	_ft	Cal. 3 Volu	imes:\	2.9 g	gallons		
				Pump Inta	ke: N	s/A	ft		
Purge Info	ormation	01 05				s. 11.1	1.		
Date Purg	ed:5,	/_24_/_25	Start :	1015	_ Finish:_\	<u>оцц</u> Р	urge Rate: N/F	\	
Purging M	lethod:	Disp. Bai	er	Tota	l Volume P	urged:	12.9 (gal	tons/mls)	
Sampling	Informati	ion							
		124/25	_			1049			
Sampling	Equipmen	it Used: Disc	s. Bai	ler	Instrume	ent ID: YSI	2244/ HFS 2	246	-
	ttle Type				rvation		Analysis Re	_	
		mber				_ Ae	P IV VOC'S		_
1 - 7	50ml P			HNOS		API	o IV Metal	\$	
***************************************			-						nu.
Field Mea	surement	s/Observations					,		_
		•		1049	Turbidity (ntu)· \5	Time:	10119	
_							Time:		
):Time:		
-							Time:		
							Time:		AND AND ADDRESS.
•							Time:Time:		
`	,	bservations:							
,					ny/cloudy	/rainy) Ter	mp. <u>60</u> (°F) V	Vind <u>0-5</u>	(mph)
Sampler S	Signature:_	CRC.			Date: 3.	24.25			
<u>Stabilizat</u>	ion Test	yd-dannar a gant a	·					P	
Time	Temp.	Diss Oxy.	Spec.		ReDox	Turbidity	Volume	Water	
Purged	(°C)	(mg/L)	Cond.	pH (s.u.)	(mV)	(ntu)	removed (gallons/mls)	level (ft)	Other
			(uS)		,	0	. ,		
1024	(7		84	5.8		25	4.3 8.6		
1035	17		84	5.8		73 18	12.9		
1044			רט	5,5	/	10	16.1		1

Date Issued: November 27, 2018 Page: 1 of **2** l

Document Number: F-CAR-FLD-001-rev.02

Issuing Authority: Pace Huntersville Quality
Office

Client: 🗛	CE		Locat	ion: Nort	erry Sc	P1	roject #: Newborn	y LF	
Name and	l Affiliation	n (Sampler(s):_	Bris Con	ton Pace		Field Data	Sheet Review:		
		n (Inspector):_		/		Dato: 7 -	24-25	ву: Д)	le N
Well Info	rmation					Date.		Бу. дэ	7
Well ID: _	MW- ZR	R		Well Locke	ed: (YE	S/NO)			
Well Dian	neter: 2.	6		Constructi	on: (P♥C,	/Steel/Stair	nless Steel)		
Total Well	l Depth: _	59.98	_ft	Multi Fact	or*: 0.16	3_ [*(Radius,	/12)2 x 3.14 x 7.48]		
Static Wat	er Level:_	37.41	ft	Casing Vo	lume:3	.7{	gallons		, о
Height of	Water Col	umn: <u>22.57</u>	_ft	Cal. 3 Volu	imes:	[.]	gallons		
				Pump Inta	ke: N/A	4	ft		
Purge Info	ormation								
Date Purg	ed: 3	124 / 25	Start :	1234	_ Finish:_	1256 P	urge Rate: NA	7	
Purging M	Method: \(\)	Disp. Bal	ود	Tota	l Volume P	urged:	11.1 (gal	tons/mls)	
Sampling	Informati	ion							
Date Colle	ected: 3	124/ 25	_	Time (Collected:_	1301	(am/pm)		
Sampling	Equipmen	it Used: Dis	P. Ba	aler	Instrum	ent ID: \(st	= 2244 / 17ES	2246	
Во	ttle Type			Prese	rvation		Analysis R	equired	
le. 40	and Am	ber		HCL			6 IN NOC'S		
1 . 25	50 ml P			HNO.	3	Ag	p IV Metal	S	
			Age distribution and the second section as						
Field Mea	surement	s/Observation	<u></u>						
Sample Te	emp (°C): _	19	_Time:	1301	Turbidity	(ntu):	Time:	1301	*****
-							Time:		
Specific C	ond. (uS):	1498	Time:	1301	Res. Cl (m	g/L) / (µg/L):Time:	_	
		le.5						1301	
ReDox (m	V):	_	Time:	_	Appearan	ce: Clear	Time:_	1301	
ReDox (El	H value):Y	SI ProPlus +20	0mV		Other:		Time: _	·	
General/V	Weather O	bservations:							
		1		(sun	ny/cloudy	/rainy) Te	mp. <u>62</u> (°F) V	Vind 0.5	_(mph)
Sampler S	Signature:_	Ce C'			Date: 3.	24.25		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Stabilizat	ion Test								
Time	Temp.	Diss Oxy.	Spec.	()	ReDox	Turbidity	Volume	Water	0.1
Purged	(°C)	(mg/L)	Cond. (uS)	pH (s.u.)	(mV)	(ntu)	removed (gallons/mls)	level (ft)	Other
1242	19	/	1703	(0.4		22	3.7		
1249	19		1695	6.5		14	7.4		
1256	19		16299	1.5		8	11.1		
l	1								

Pace Analytical*

Document Name: Field data Sheet

Date Issued: November 27, 2018

Document Number: F-CAR-FLD-001-rev.02

Page: 1 of 2 1 Issuing Authority: Pace Huntersville Quality Office

Client: ACE Location: News	erry SC Project #: Nowberry LF
Name and Affiliation (Sampler(s) hrts Corbin / Pac	
Name and Affiliation (Inspector): N/A	
Well Information	Date: 3-24-25 By: JM/
Well ID: Mw-3 Well Locke	ed: (YES/NO)
Well Diameter: 7.0 Construction	on: (PVX/Steel/Stainless Steel)
Total Well Depth: 38.78 ft Multi Factor	or*: <u>0. \しろ</u> [*(Radius/12)2 x 3.14 x 7.48]
Static Water Level: 35.74 ft Casing Vol	ume: 0.5 gallons
Height of Water Column: 3.04 ft Cal. 3 Volu	mes: <u>1.5</u> gallons
	ke: N/A ft
Purge Information Date Purged: 3 / 24 / 25 Start: 1320	Finish: \340 Purge Rate: \(\sigma/\)
Purging Method: Disp. Booler Total	
Sampling Information	
	Collected: \७५० (am/pm)
Sampling Equipment Used: Disp. Bailer	Instrument ID: YSI २२५५/ HFS १८५८
	vation Analysis Required
Le. 40ml Amber HCL	App IV you's
	App IV Metals
Field Measurements/Observations	
Sample Temp ($^{\circ}$ C): 2° Time: 134°	Turbidity (ntu): 42 Time: 1340
Diss Oxy (mg/L): Time:	Fe 2+ mg/L:Time:
Specific Cond. (uS): Time: \(\) \	
Sample pH (s.u.): Time:1346	Odor: Slight Time: 1340
ReDox (mV): Time:	
ReDox (EH value):YSI ProPlus +200mV	Other: Time:
General/Weather Observations:	Town 12 (OF) Mind 2 F (mah)
1	ny/cl@dy/rainy) Temp. <u>63</u> (°F) Wind <u>5 - 5</u> (mph)
Sampler Signature:	Date: 3.24.25
Stabilization Test	
Time Temp. Diss Oxy. Cond. pH (s.u.)	ReDox Turbidity Volume removed Water Other
Purged (°C) (mg/L) (uS)	(mV) (ntu) (gallons/mls) level (ft)
1325 20 / 576 (8.5	/ 21 0.5
	Pa
* Well dry @ I volume. Allowed to re for samples	(OAC)
101 2000 B102	

Date Issued: November 27, 2018
Page: 1 of 2 \

Document Number: F-CAR-FLD-001-rev.02

Issuing Authority: Pace Huntersville Quality
Office

Client: ACE	Loca	tion: <u>Neب</u> اح	erry , Sc	P	roject #: Newber	cry LF	
Name and Affiliation (Sampler(Sheet Review:		
Name and Affiliation (Inspector): N/A	,		Date: ? -	24-25	Bv: ∧	x/
Well Information						27. 8	710
Well ID: Mw-4R		Well Lock	`.				
Well Diameter:		Constructi	ion: (PVC)	/Steel/Stain	nless Steel)	•	
Total Well Depth: <u>62.47</u>	ft	Multi Fact	or*: <u>0.\\</u>	3 [*(Radius	/12)2 x 3.14 x 7.48]	,	
Static Water Level: 30.85	ft	Casing Vo	lume:	5.2	gallons		.a.
Height of Water Column: 31.6	2_ft	Cal. 3 Volu	umes:l	5.b8	gallons	-	
		Pump Inta	ike: N/	A	ft		
Purge Information	O Create	1255	P*	luo\ r	D		
Date Purged: 3 / 24 / 7							
Purging Method: $\overline{\mathcal{D}}$ (s.g., $\overline{\mathcal{R}}$	iler	Tota	l Volume F	Purged:!	5. 6 (gal	lons/mls)	
Sampling Information							
Date Collected: 3 /24/ 20	5	Time	Collected:_	1426	(am/pm)		
Sampling Equipment Used: D	isp. Bal	ler	Instrum	ent ID: YSI	2244 HFS 22	yle	
Bottle Type		Prese	rvation		Analysis Ro	equired	
6. Home Amber							
1 - 250ml P		HND.	3	Ap	p IV metal	S	
	***************************************	***************************************			***************************************		
Field Measurements/Observati	ons —						
Sample Temp (°C):19		1426	Turbidity	(ntu):	Z Time:	1424	
Diss Oxy (mg/L):							
Specific Cond. (uS): 873							
Sample pH (s.u.):						1426	
ReDox (mV):				•		1426	
ReDox (EH value):YSI ProPlus +							
General/Weather Observations					*		
	1	(sun	ny/cloudy	/rainy) Te	mp. <u>63</u> (°F) V	Vind 0.5	_(mph)
Sampler Signature:			Date: 3.	24.25			
Stabilization Test					r		
Time Temp. Diss Oxy	Spec.		ReDox	Turbidity	Volume	Water	Other
Purged (°C) (mg/L)	Cond. (uS)	pH (s.u.)	(mV)	(ntu)	removed (gadlons/mls)	level (ft)	Other
1403 19	858	6.8	/	12	5.2		
1412 19	871	6.8		3	10.2		
1421 19	873	(0.8		1	15.10		

Pace Analytical"

Document Name: Field data Sheet

Date Issued: March 8, 2019

Page: 1 of]

Document Number: F-CAR-FLD-001-rev.03

Issuing Authority: Pace Huntersville Quality
Office

Client:/	ACE		Locati	ion: City o	of Newb	my LF Pr	oject #: <u>\$4 &/</u> &	und wicote,	
Name and	Affiliation	n (Sampler(s):_	Tity J	enkin /	Pace	Field Data S	Sheet Review:		
		n (Inspector):	,			Data: 3	0. 2.	D	
Well Info	rmation					Date: 3	,26.25	Ву: СС	
		MW-5		Well Locke	ed: (YE) / NO / F	lushmount)		
Well Diam	neter:	2-0		Constructi	on: (EVC)	'Steel/Stair	nless Steel) 🥻 🛰	era Unkano	Mp.
Total Well	Depth:	33.81	ft	Multi Facto	or*: 6-16	[*(Radius/	(12)2 × 3.14 × 7.48]	11	
Static Wat	er Level:	20.71	ft	Casing Vol	lume:	.14 8	gallons		,at
Height of	Water Col	umn: 13.10	_ft	Cal. 3 Volu	ımes:	/A g	allons		
				Pump Inta	ke: <i>U</i>	A	ft		
Purge Info									
Date Purg	ed: 03	124/25	Start :	1327	_ Finish:	1333 P	urge Rate:_ <u>/ / ለ</u>		
Purging M	lethod:_D	isp. Bailer		Tota	l Volume P	urged:7	(gal	lons/mls/L	.)
Sampling	Informati	on							
		124/25				1903			
Sampling	Equipmen	t Used: Dis	p Bo	iler	Instrum	ent ID: <u>VS</u> Ţ	-5335, 14	FS-8195	
	ttle Type				rvation		Analysis Re	equired	
1	^	or Viali					DES ADILV		
(1) 55	ON P		_HN	03	,		DES AGO IV	Metals	
-								.,	
		s/Observation		I II no		-	_	413.00	
		17			•	, ,	3Time:		Application of the Control of the Co
		(z D		. 110	•		Time:		
		89			•):Time:	1403	<u>.</u>
		5,6				Vove		1403	
ReDox (m	(V):	CLD DI	Time:			ce:	Time:_	}	
		bservations:	OHIV		Other. <u>Ro</u>	3011/11/20	Time.		
Generaly	··	DBCI V d CIOINS.		(sun	ny/cloudy	/rainy) Te	mp. 64 (°F) V	Vind 5110	 _(mph)
Sampler S	ionaturo:	0 H.1 &	m, m			3/24/2			
Stabilizat	1,1-11	11.30	2000		Date			***************************************	
	1011 1001		Spec.				Volume		
Time	Temp.	Diss Oxy.	Cond.	pH (s.u.)	ReDox	Turbidity	removed	Water	Other
Purged	(°C)	(mg/L)	(uS)		(mV)	(ntu)	(gallops/mls/ L)	level (ft)	-
1333	17		103	5-6		191	2.2(11)		/_
		/			/_			/	
								/	
					-/			/	/

Date Issued: November 27, 2018
Page: 1 of 2 \

Document Number: F-CAR-FLD-001-rev.02

Issuing Authority: Pace Huntersville Quality
Office

Client: AC	E	and we consider the constant of the constant o	Locat	ion: Newb	erry S	Pr	oject #: Noube	rry LF	
Name and	l Affiliation	n (Sampler(s):(Jams Co	Par Par	<u>.</u>	Field Data S	Sheet Review:		
		n (Inspector):_	4	V	_	Date: 3	79-25	By:	4/
Well Info	<u>rmation</u>					Dutc.		Бу. ч	· V
Well ID: _	Mw-6			Well Locke	ed: (YE	S / NO)			
Well Dian	neter:	2.6		Constructi	on: $(P \forall C)$	/Steel/Stair	ıless Steel)		,
Total Well	Depth:	17.25	_ft	Multi Facto	or*: <u>0-163</u>	[*(Radius/	/12)2 x 3.14 x 7.48]		1
Static Wat	er Level:_	22.18	ft	Casing Vo	lume:	8.0	gallons		е,
Height of	Water Col	umn: 5.07	_ft	Cal. 3 Volu	ımes: 2	.4	gallons		
				Pump Inta	ke:	I/A	ft		
Purge Info									
Date Purg	ed:_3	1 24 / 25	Start:	1128	_ Finish:	1212 P	urge Rate: N/A		i d
Purging M	Method:	Disp. Baile	. (Total	l Volume P	urged:	7.4 (gal	(Ons/mls)	
Sampling	Informati	ion							
		124/25							
Sampling	Equipmen	t Used: Disp	. Bail	er	Instrume	ent ID: YSI	2244/ HFS 224	6	-
Во	ttle Type			Prese	rvation		Analysis R	equired	
Le · 1	Done An	nber					P IN VOC'		_
1 - 2	50ml P		affaith assailt ann an an t-aire an an t-aire an	HN	03	_ Ac	op IV Met	als	_
			-						_
Field Mea	surement	s/Observation	s						_
				1217	Turbidity ((ntu):	Time:	1217	
-							Time:		
•):Time:		
3.50							Time:		
						0	Time:_		Andread - Andrea
							Time:		
		bservations:							
		1		(sun	ny/cl ou dy	/rainy) Te	mp. <u>59</u> (°F) V	Vind_>·	<u> (mph) </u>
Sampler S	Signature:_	CRC.			Date: 3.1	24.25			
Stabilizat	ion Test								
, Time	Temp.	Diss Oxy.	Spec.		ReDox	Turbidity	Volume	Water	
Purged	(°C)	(mg/L)	Cond.	pH (s.u.)	(mV)	(ntu)	removed (gallons/mls)	level (ft)	Other
			(uS)	1 7					-
1202	18		587	6.2		8	0.8 1.le		+/
1207	18		607	6.2		7	2.4	/	
1010									

Date Issued: November 27, 2018
Page: 1 of 2 \

Document Number: F-CAR-FLD-001-rev.02

Issuing Authority: Pace Huntersville Quality
Office

Client: 🕂	37		Locat	ion: Newl	serry, S	<u>C</u> Pı	roject #: Nashe	cry LF	
		n (Sampler(s).					Sheet Review:		
		n (Inspector):_		<i>'</i>	_	Date: 7	-74-25	Ву: ЈЛ	1
Well Info							(7-()		0
Well ID: _	MW-70	<u> </u>		Well Locke	ed: (YE	S/NO)			
Well Dian	neter:7	.6		Constructi	on: (PVC)	/Steel/Stair	nless Steel)		
Total Well	l Depth:	40.41	_ft	Multi Fact	or*: 0.16	3[*(Radius,	/12)2 x 3.14 x 7.48]	,	
Static Wat	er Level:_	33.40	ft	Casing Vo	lume:	4.4 8	gallons		,а
Height of	Water Col	umn: 27.01	_ft	Cal. 3 Volu	imes:13	3.2	gallons		
				Pump Inta	ke:	ALL	ft		
Purge Inf Date Purg		1 24 / 25	Start :	1104	Finish:	133 0 33 P	urge Rate: ∾/A		
Purging M	Method: \(\)	Disp. Bail	er	Tota	l Volume P	urged:\	3.2 (gál	lons/mls)	
Sampling	Informati	ion				1138			
		124/25				1038	7		
Sampling	Equipmer	it Used: Disc	Baile	.v	Instrum	ent ID: <u>Yst</u>	2244 HFS 2241	V .	
	ttle Type				rvation		Analysis Re	_	
						- AR	P 11 VOC'S		
1 - 25	Oml P			HN03			ip IV Meta		
9									
Field Mea	surement	s/Observation	<u>s</u>						
Sample Te	emp (°C):	17	Time:	038	Turbidity ((ntu):	Time:	1038	
							Time:		
-):Time:		
		6.0						1038	nacionaliza
						9	Time:_	1038	
ReDox (El	H value):Y	SI ProPlus +20	0mV		Other:	A control of the state of the s	Time: _		
General/V	Weather O	bservations:							
		ī		(sun	ny/cloudy	/rainy) Te	mp. <u>59</u> (°F) V	Vind_ <u>0 - 5</u>	_(mph)
Sampler S	Signature:_	Cec			Date: 3.7	4.25			
Stabilizat	ion Test								
, Time	Temp.	Diss Oxy.	Spec.	TT / - \	ReDox	Turbidity	Volume	Water	OIL
Purged	(°C)	(mg/L)	Cond. (uS)	pH (s.u.)	(mV)	(ntu)	removed (gallons/mls)	level (ft)	Other
1114	17		119	(0.)	/	N	4.4		
1123	in		128	6.0		3	8.8		
1033	17		125	6.0		< 1	13.2	/	
	1		1	1					

Date Issued: November 27, 2018
Page: 1 of 2 \

Document Number: F-CAR-FLD-001-rev.02

Issuing Authority: Pace Huntersville Quality
Office

Client: A	CE	MANAGEMENT AND A STATE OF THE S	Locat	tion: <u>Nev</u>	Serry	SC P	roject #: Newbo	my Le	
Name and	Affiliatio	n (Sampler(s):	Jaris C	orbin Pa	ce	Field Data	Sheet Review:		,
		n (Inspector):_	N/A	L		Date: 3	131/20	By:	
Well Infor								- J · V	r
			=		ed: (YŒ				
Well Diam	eter:	.,0	-	Construct	ion: (PVC	/Steel/Stai	nless Steel)	,	
Total Well	Depth: _	71.84	_ft	Multi Fact	or*: 0.11	3 [*(Radius	/12)2 x 3.14 x 7.48]	1	
Static Wate	er Level:_	33.63	ft	Casing Vo	olume:	.2	gallons		.5
Height of \	Water Col	lumn: 38.21	_ft	Cal. 3 Volu	umes:\{	5. b	gallons		
				Pump Inta	ike:N	J/A	ft		
Purge Info	ormation	0- 0-				V			
Date Purge	ed:	/ <u>B</u>	Start :	1000	Finish:	гоцо F	Purge Rate: N	A	
Purging M	lethod:)150 Baile	~	Tota	I Volume I	urged:	18.6 (gad	tons/mls)	
Sampling	Informat	ion							
		/25/25	_	Time	Collected:_	1645	(am/pm)		
Sampling 1	Equipmer	nt Used: Disc	P. Bail	er	Instrum	ent ID: YS5	2244/HFS	2246	
Bot	ttle Type			Prese	rvation		Analysis R	equired	
			-			A	pp Voc's		
1 - 250	ml P		- Marine and a standard and a standa	HNO	3	Ae	p Meta	-/2	
xhi* in			-						
Field Mea	surement	s/Observation	<u>s</u>			100,000			
Sample Te	mp (°C): _	19	_Time:	1645	Turbidity	(ntu):\2	Time:	1645	
Diss Oxy (mg/L):		Time:		Fe 2+ mg/	L:	Time:	-	
Specific Co	ond. (uS):	232	_Time:	1645	Res. Cl (m	g/L) / (μg/L	.):Time:		- Marian
		5.7						1645	
							Time:_		
•	,	SI ProPlus +20	00mV		Other:	- L	Time: _		on the second se
General/W	Veather O	bservations:		(siin		/rainy) Te	mp. <u>75</u> (°F) V	Vind O-5	(mph)
Complex C	ion atura.	Cec!	W. 4-1-1		Date: 3.7		mp. <u>12</u> (1)	VIII.a. U	_(111)
Stabilizati	_				Date	29,25			
Time		Dic- O	Spec.		D.D	Translat 114	Volume	TA7 - 1	
Purged	Temp. (°C)	Diss Oxy. (mg/L)	Cond.	pH (s.u.)	ReDox (mV)	Turbidity (ntu)	removed	Water level (ft)	Other
	. , ,	(01 -)	(uS)		,	, ,	(gallons/mls)	(-3)	
1613	19		225	5.7		29	12.1		
1676	19		278	5.7 5.7		24 12	12.4 18.6		
10-10	, L			J. /			. 8.0		

Date Issued: March 8, 2019

Document Number: F-CAR-FLD-001-rev.03

Page: 1 of ↓
Issuing Authority: Pace Huntersville Quality Office

Client: ACE Location: City of Newberry LF Project #: St Grand work,
Name and Affiliation (Sampler(s): 1144 Jankin / Pace Field Data Sheet Review:
Name and Affiliation (Inspector): /// Date: 3.74.25 By: CC
Well Information
Well ID: Well Locked: (YES / NO / Rushmount)
Well Diameter: Construction: (RVC/Steel/Stainless Steel)
Total Well Depth:ft
Static Water Level: 46.78 ft Casing Volume: 4 gallons
Height of Water Column: 14-12 ft Cal. 3 Volumes: 12-0 gallons
Pump Intake:ft
Purge Information
Date Purged: 03 / 74 / 75 Start: 1625 Finish: 1654 Purge Rate: NA
Purging Method: Disp. Bailer Total Volume Purged: 17-0 (gallons/mls/L)
Sampling Information
Date Collected: 03 /24/25 Time Collected: 1057 (am/pm)
Sampling Equipment Used: 150. Bailer Instrument ID: VSI - 5335, 1455-8195
Bottle Type Preservation Analysis Required
(6) 40ml Amber Vial. HCL SCDES April Voci
(1) 250al P HNO3 SCDES Agg IV Metals
Field Measurements/Observations
Sample Temp (°C):
Diss Oxy (mg/L): Time: Fe 2+ mg/L: Time:
Specific Cond. (uS): 708 Time: 1657 Res. Cl (mg/L)/(μg/L): Time:
Sample pH (s.u.): 5-9 Time: 1657 Odor: 5) ght Time: 1657
ReDox (mV): Time: Appearance: C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ReDox (EH value):YSI ProPlus +200mVOther: No 50 16 ,Time:
General/Weather Observations:(sunny/cloudy/rainy) Temp. 67 (°F) Wind 3-5 (mph)
19 1 1.
Stabilization Test Volume Volume
Time Temp. Diss Oxy. Spec. ReDox Turbidity removed Water Other
Purged (°C) (mg/L) (uS) PII (s.u.) (mV) (ntu) (gallons/mls/ level (ft) L)
1633 19 / 704 5.9 / 2) 4 /
1644 19 / 707 5-9 / <1 8 /
1654 19 / 709 60 / <) 12 /

Date Issued: March 8, 2019

Document Number: F-CAR-FLD-001-rev.03

Page: 1 of J

Issuing Authority: Pace Huntersville Quality

Office

					ata Sheet				
Client:/	9CE		Locati	ion: City o	of Newb	elly LF Pr	oject #: SA GA	inal Wester	
Name and	Affiliation	n (Sampler(s):_	May J	enkin /	Pace	Field Data S	Sheet Review:		
Name and	Affiliation	n (Inspector):/	VA			Date: 3	26.25	By: cc	
Well Info		Service of a				Date. 3	CG, CS	Бу. С	
		TMW-10		Well Locke	ed: (YE	S/NO/F	lushmount)		
		2.0		Constructi	on: (PVC)	/Steel/Stair	ıless Steel)	,,	
Total Well	Depth:	43.88	ft	Multi Facto	or*:0.163	(Radius/	(12)2 x 3.14 x 7.48]	11	
Static Wat	er Level:_	17.49 f	t	Casing Vo	lume:	1-3{	gallons		.97
Height of	Water Col	umn: 76.39	<u>f</u> t	Cal. 3 Volu	umes:/	<u>7.9 </u>	allons		
				Pump Inta	ke:	JA	ft		
Purge Info				30					
Date Purg	ed: 03	124/25	Start :	1509	Finish:	1557 P	urge Rate: NA		
Purging N	lethod:	Disp. Bail	ler	Tota	l Volume F	urged:	2.9 (gal	lons/mls/I	_)
	Informati								
		124/25							
Sampling	Equipmen	nt Used: <u>೧೯১</u> ೩	Bail	er	Instrum	ent ID: <u>VS</u>	-5335, 14	FS-8195	
	ttle Type				rvation		Analysis Re	equired	
. 1		or Viali					DES ADILL		
(1) 55	ONL P		1+N	03		<u>SCI</u>	DES App IV	Metaly	
					/				
	/								
Field Mea	surement	s/Observations	<u> </u>						
Sample Te	emp (°C): _	19	Time:	160c	Turbidity	(ntu):	Time:	1600	againment of the control of the cont
Diss Oxy	(mg/L):				Fe 2+ mg/	t:	Time:		
Specific C	ond. (uS):		Time:	1600	Res. Cl (m	g/L)/(µg/L)Time:		-
Sample pl	H (s.u.):	5-7	Time:	1600	Odor:		Time:	1600	
						1			-
		SI ProPlus +200)mV		Other: NV	501:3	Time: _		
General/V	Veather O	bservations:			(1.0)	/\ TT	(0 K (OT) T/	7:-13	(
***************************************	··	101		•		1	mp. <u>(0 (</u> °F) V	vina_ <u>>~ \</u>	_(mpn)
Sampler S Stabilizat	_	In the	一押		Date: <u>03</u>	74/75			
Tiḿe	Temp.	Diss Oxy.	Spec. Cond.	pH (s.u.)	ReDox	Turbidity	Volume removed	Water	Other
Purged	(°C)	(mg/L)	(uS)	P11 (5.u.)	(mV)	(ntu)	(gallons/mls/ L)	level (ft)	Oulei
1539	19	/	767	5.7		27	4-7	/	
1549	19		272	5.7		7.1	8-6		
1557	19		770	5.7		36	17.9		
								/	

Pace Analytical"

Document Name: Field data Sheet

Date Issued: March 8, 2019 Page: 1 of _

1	Docume	ent Number:	F-CAR-FLD-0	01-rev.03	Issuing Authority:	Pace Huntersy Office	rille Quality
ACP		-	ata Sheet		*		14
			/ ~ =		oject #: <u>\$1 61</u>	und Wicole,	
Name and Affiliation (Sampler(s)	,	enkins /	Tace	Field Data S	Sheet Review:		
Name and Affiliation (Inspector):	NA		-	Date: 3	. 74.75	By: Cc	
Well Information							
Well ID:		Well Locke			lushmount)		
Well Diameter: 20					nless Steel) 0	, scles	v
Total Well Depth: 30.76					(12)2 x 3.14 x 7.48]		
Static Water Level: 21.76		Casing Vol	lume:	47 [gallons 5,60	14 M	122
Height of Water Column: 9,0	ft (Cal. 3 Volu	ımes: 4.	5	allons		
]	Pump Inta	ke: 2	.7	ft		
Purge Information							
Date Purged: 03 / 74 / 75	Start :_	1229	_ Finish:_	1244 P	urge Rate:		
Purging Method: Parrstaltic	Panp.	Total	l Volume P	urged:7	300 (gal	fons/mls/L	7)
Sampling Information							
Date Collected: 03 /24/25		Time (Collected:_	1249	(am/pm)		
Sampling Equipment Used: Per	istaltic	Punp	Instrum	ent ID: <u>YS</u> Ţ	-5335, 1+	FS-8195	
Bottle Type		Prese	rvation		Analysis Re	equired	
(6) 40ml Ambor Vial	ItCL	•		<u> </u>	ES Aprilu	VúCi	
(1) S50M P	HN1	03	·····		DES App IV	Metals	
/		/			/		
Field Measurements/Observation	<u>ns</u>						
Sample Temp (°C):17	Time:	1749	Turbidity	(ntu):	Time:	1749	
-Diss Oxy (mg/L):	Time:		Fe 2+ mg/	L:	Time:		
Specific Cond. (uS):	Time:		Res. Cl (m	g/L)/(µg/L):Time:		•
Sample pH (s.u.): 5-7	Time:	1249	Odor:	none	Time:	1749	
ReDox (mV):	Time:		Appearan	. 1 3	Time:_		
ReDox (EH value). YSI ProPlus +2			Other: 1	, , , ,	Scdino-Time:	/-1-	-
General/Weather Observations:	Water L					17: 15:10	
				/rainy) Te	mp. (°F) V	Wind 5-10	_(mpn)
Sampler Signature:	~ , II		Date: <u>03</u>	124/25			
Stabilization Test					Volumo	1	
Time Temp. Diss Oxy.	Spec.		ReDox	Turbidity	Volume removed\	Water	
Purged (°C) (mg/L)	Cond.	pH (s.u.)	(mV)	(ntu)	(gallons/mls/	level (ft)	Other
	(uS)	C -	/	4 1.	L) 000		/34
1234 17	70	5-2 5-2	 	4-6	3,700	/	36
1744 17	70	5.7	- / -	7 %	5,500	/	/ 36

Date Issued: March 8, 2019

Document Number: F-CAR-FLD-001-rev.03

Page: 1 of J

Issuing Authority: Pace Huntersville Quality

Office

					ata Sneet				
Client:/	ACE_		Locat	ion: City o	of Newby	my LF Pr	oject #: <u>\$4 61</u> 6	und weeter	
Name and	Affiliation	n (Sampler(s):_	Try J	enkin /	Pace	Field Data S	Sheet Review:		
Name and	Affiliation	n (Inspector):_	NA		_	Data: 3	. 26.25	By: cc	
Well Infor	rmation					Date. 3	. 64. 23	Бу. С.С.	
Well ID: _(annons	Creek		Well Locke	ed: (YE	S/NO/F	ushmount)		
Well Diam	eter:			Constructi	on: (PVC)	'Steel/Stair	iless Steel)		
Total Well	Depth:		<u>f</u> t	Multi Facto	or*:	[*(Radius/	(12)2 x 3.14 x 7.48]	t)	
Static Wate	er Level:		ft	Casing Vo	lume:		gallons		, an
Height of	Water Col	umn:	_ft	Cal. 3 Volu	ımes:	8	allons		
				Pump Inta	ke:		ft		
Purge Info									
Date Purg	ed: <u>03</u> ,	174/25	Start:		Finish:	P	urge Rate:		
Purging M	lethod:	1100 700 407 807 807 90 90 90 90 90 90 90 90 90 90 90 90 90		Tota	l Volume P	urged:	(gal	lons/mls/L	.)
	- 4 -								
Sampling				ma.	C 11 . 1	1440	, , , ,		
		124/25	i .			1440			
		t Used: <u>Or</u>	· p			ent ID: <u> </u>	-5335, 14		
	ttle Type	ta. S	li c		rvation	(1)	Analysis Re	_	
. 1		or Vial		<u>L</u>			ES ADILL	. 1	
(1) (5)	ONI P		171	03	1	<u> </u>	DES AGO IV	Metall	
		Mary processor and the second							
		· · · · · · · · · · · · · · · · · · ·						*	
		s/Observation							
							7.5 Time:		
			Time:		Fe 2+ mg/	L:	Time:		-
Specific C	ond. (uS):	105	Time:	1440	Res. Cl (m	g/L)/(µg/L):Time:		•
Sample pl	H (s.u.):	6.5	Time:	1440	Odor:	none	Time:	1440	
ReDox (m	V):		Time: _		Appearan	ce: clear	Time:		
							Sediana Time:		
General/V	Weather O	bservations:	Rain Pl	14MT GCC!	red ber	iven 8+1	Oan		
	·,						mp. <u>& %</u> (°F) V	$Vind_3 - 5$	_(mph)
Sampler S	Signature:	& H- hali	s.II		Date: 03	124/25	<u> </u>		
Stabilizat	_		-400						
1			Spec.				Volume	***	
Time	Temp.	Diss Oxy.	Cond.	pH (s.u.)	ReDox	Turbidity	removed	Water	Other
Purged	(°C)	(mg/L)	(uS)		(mV)	(ntu)	(gallons/mls/ L)	level (ft)	-
		/			1		·		/
								4	
	l				/			/	

Document Name: Water Level Data Report

Document No.: F-GWD-F-005-rev.00

Issued Date: April 15, 2014

Issuing Authorities:
Pace Greenwood Quality Office

Water Level Data Report

Client: Alliance Consulting Engineers
Location: Newberry Landfill Date: 3/24/2025

	Top of						
Well	Casing	Wate	er Level	Produ	ıct Level	Product	
Identification	Elevation	Depth	Elevation	Depth	Elevation	Thickness	Comments
MW-1R	504.92	34.04	470.88				
MW-2RR	459.82	37.41	422.41				
MW-3	453.92	35.74	418.18				
MW-4R	441.55	30.85	410.70				
MW-5	420.12	20.71	399.41				
MW-6	440.55	22.18	418.37				
MW-7R	457.34	33.40	423.94				
MW-8	443.39	33.63	409.76				
TMW-9	457.58	46.78	410.80				
TMW-10	415.07	17.49	397.58				
TMW-11	NA	21.76	NA				
TMW-12	468.18	NA	NA				obstruction @1.8ft
TMW-13	409.25	NA	395.89				TD=18.25 (obs)

Personnel

Employee Name	Employee Number	Arrival Time	Departure Time	Arrival Time	Departure Time	Travel Time In Hours	Total Time
Trey Jenkins							

Equipment and Supplies Used

TMW-11: Pad damaged by logging activities. The inner casing has been bent app 1.5ft below TOC.
A 3/4" OD disposable bailer was used to purge and sample well.

APPENDIX BSTATISTICAL ANALYSIS RESULTS

Parameter: Barium, Total Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Location MW-1R	d Locations Obs. 29	Mean 174.862	Std. Dev. 117.551	Skewness 2.3225	
Complianc	e Locations				
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	29	2426.62	1271.72	-0.855751	
MW-3	29	570.759	526.342	1.36892	
MW-4R	29	640.552	165.483	-1.72189	
MW-5	29	255	383.537	3.43602	
MW-6	29	314.345	233.151	0.706642	
MW-7R	29	221.469	129.052	0.909586	
MW-8	29	217.897	76.6571	-0.453729	
TMW-09	29	931.828	272.025	-2.02234	
TMW-10	29	250.241	94.6454	0.894165	
TMW-13	29	245.276	457.994	2.91271	
TMW-11	12	284.908	406.069	2.04289	

Parameter: Barium, Total Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Backgroun Location MW-1R	d Locations Obs. 29	Mean 4.97838	Std. Dev. 0.66069	Skewness -1.25541	
Complianc	e Locations				
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	29	7.37296	1.3421	-2.09569	
MW-3	29	5.39608	1.8789	-0.761189	
MW-4R	29	6.3436	0.756659	-4.63877	
MW-5	29	5.0357	0.920161	0.482623	
MW-6	29	5.09728	1.52367	-0.99708	
MW-7R	29	5.15175	0.868956	-1.77615	
MW-8	29	5.26646	0.622704	-3.06225	
TMW-09	29	6.68037	0.871685	-4.07468	
TMW-10	29	5.3951	0.662031	-3.14326	
TMW-13	29	4.19538	1.66628	0.333463	
TMW-11	12	4.96274	1.21187	0.0879906	
All Locatio	ns Obs.	Mean	Std. Dev.	Skewness	

Parameter: Cadmium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Location MW-1R	d Locations Obs. 3	Mean 1	Std. Dev.	Skewness Div 0
Complianc	e Locations			
Location	Obs.	Mean	Std. Dev.	Skewness
MW-2RR	3	2.86667	1.95533	0.155453
MW-3	3	1	0	Div 0
MW-4R	3	1	0	Div 0
MW-5	3	1	0	Div 0
MW-6	3	1	0	Div 0
MW-7R	3	1.2	0.34641	0.707107
MW-8	3	1	0	Div 0
TMW-09	3	1	0	Div 0
ΓMW-10	3	1	0	Div 0
ΓMW-11	3	1	0	Div 0
ΓMW-13	3	1	0	Div 0

A 11	 _	cat	_	•
All	u	(.41	w	15

Obs.	Mean	Std. Dev.	Skewness	
36	1.17222	0.704926	4.58537	

Parameter: Cadmium

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Obs.

36

Mean

-0.550594

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location MW-1R	d Locations Obs.	Mean -0.693147	Std. Dev. 0	Skewness Div 0
Complianc	e Locations			
Location	Obs.	Mean	Std. Dev.	Skewness
MW-2RR	3	0.62978	1.18381	-0.510887
MW-3	3	-0.693147	0	Div 0
MW-4R	3	-0.693147	0	Div 0
MW-5	3	-0.693147	0	Div 0
MW-6	3	-0.693147	0	Div 0
MW-7R	3	-0.30543	0.671545	0.707107
MW-8	3	-0.693147	0	Div 0
TMW-09	3	-0.693147	0	Div 0
TMW-10	3	-0.693147	0	Div 0
TMW-11	3	-0.693147	0	Div 0
TMW-13	3	-0.693147	0	Div 0

Std. Dev.

0.49784

Skewness

3.41278

Parameter: Cobalt

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Backgroun Location MW-1R	d Locations Obs.	Mean 5	Std. Dev.	Skewness Div 0
Compliance	e Locations			
Location	Obs.	Mean	Std. Dev.	Skewness
MW-2RR	4	14	2.39305	0.988359
MW-3	4	40.225	15.4836	0.420266
MW-4R	4	8.575	0.745542	0.109717
MW-5	4	5	0	Div 0
MW-6	4	19.55	8.10535	-0.932305
MW-7R	4	5	0	Div 0
MW-8	4	5	0	Div 0
TMW-09	4	5	0	Div 0
TMW-10	4	5	0	Div 0
TMW-11	4	5	0	Div 0
TMW-13	4	5	0	Div 0

All Location	ns			
	Obs.	Mean	Std. Dev.	Skewness
	48	10.1958	11.1321	2.88504

Parameter: Cobalt

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

48

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location MW-1R	d Locations Obs. 4	Mean 0.916291	Std. Dev.	Skewness Div 0
Complianc	e Locations			
Location	Obs.	Mean	Std. Dev.	Skewness
MW-2RR	4	2.62894	0.16091	0.932881
MW-3	4	3.63811	0.390947	-0.062852
MW-4R	4	2.14602	0.0869501	0.00901788
MW-5	4	0.916291	0	Div 0
MW-6	4	2.87724	0.555952	-1.06678
MW-7R	4	0.916291	0	Div 0
MW-8	4	0.916291	0	Div 0
TMW-09	4	0.916291	0	Div 0
TMW-10	4	0.916291	0	Div 0
TMW-11	4	0.916291	0	Div 0
TMW-13	4	0.916291	0	Div 0

0.977418

1.33225

1.55172

Parameter: Zinc

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Location MW-1R	d Locations Obs. 4	Mean 11.25	Std. Dev. 2.5	Skewness 1.1547	
Complianc	e Locations				
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	4	74.025	69.9954	1.08808	
MW-3	4	17.575	13.2872	1.11907	
MW-4R	4	10	0	Div 0	
MW-5	4	10.575	1.15	1.1547	
MW-6	4	11.55	1.28193	-0.276256	
MW-7R	4	10	0	Div 0	
MW-8	4	10	0	Div 0	
TMW-09	4	14.625	2.53295	-0.429656	
TMW-10	4	10	0	Div 0	
TMW-11	4	21.575	13.4334	0.0300215	
TMW-13	4	10	0	Div 0	

Parameter: Zinc

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Backgroun Location MW-1R	d Locations Obs. 4	Mean 1.88409	Std. Dev. 0.549306	Skewness 1.1547	
Complianc	e Locations				
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	4	4.0258	0.812909	0.80788	
MW-3	4	2.34944	0.958637	0.549487	
MW-4R	4	1.60944	0	Div 0	
MW-5	4	1.83448	0.450081	1.1547	
MW-6	4	2.26867	0.444169	-1.08498	
MW-7R	4	1.60944	0	Div 0	
MW-8	4	1.60944	0	Div 0	
TMW-09	4	2.67074	0.181747	-0.569737	
TMW-10	4	1.60944	0	Div 0	
TMW-11	4	2.55462	1.09216	0.00415791	
TMW-13	4	1.60944	0	Div 0	

Parameter: pH, field
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Backgroun Location	d Locations Obs.	Mean	Std. Dev.	Skewness	
MW-1R	29	3.81276	2.8345	-0.608209	
Complianc	e Locations				
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	29	4.04586	2.99335	-0.640095	
MW-3	29	3.87448	3.08859	-0.485473	
MW-4R	29	4.41621	3.26361	-0.646999	
MW-5	29	3.76966	2.7908	-0.63555	
MW-6	29	3.99241	2.95723	-0.633257	
MW-7R	29	3.94	2.91618	-0.637469	
MW-8	29	3.74448	2.82012	-0.50204	
TMW-09	29	3.80034	2.81095	-0.642073	
TMW-10	29	3.68966	2.72685	-0.646815	
TMW-13	29	1.17379	2.33909	1.44793	
TMW-11	12	4.84167	1.55064	-2.8374	
All Locatio	ns				
2 23 200000	Obs. 331	Mean 3.70281	Std. Dev. 2.91234	Skewness -0.45308	

Parameter: pH, field Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

MW-2RR 2 MW-3 2	Obs. 29	Mean 1.19229	Std. Dev.	Skewness
Location MW-2RR 2 MW-3 2	Obs. 29		Std. Dev.	Skewness
MW-3		1 10220		
		1.13443	0.880863	-0.648886
101115	29	1.13621	0.904498	-0.493691
MW-4R	29	1.24995	0.923094	-0.651319
MW-5	29	1.14584	0.846734	-0.647361
MW-6	29	1.1833	0.874571	-0.646447
MW-7R	29	1.17484	0.868082	-0.648026
MW-8	29	1.1383	0.844624	-0.618475
TMW-09	29	1.15133	0.850585	-0.649046
TMW-10	29	1.13216	0.836186	-0.650769
TMW-13	29	0.359109	0.715566	1.4474
TMW-11	12	1.52427	0.483005	-2.94862

Parameter: Specific Conductivity, Field Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Backgroun Location MW-1R	d Locations Obs. 29	Mean 57.2759	Std. Dev. 46.257	Skewness -0.394732	
Compliance	e Locations				
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	29	979.241	815.249	-0.181387	
MW-3	29	438.793	377.561	-0.0845328	
MW-4R	29	599.862	459.585	-0.441869	
MW-5	29	64.7241	50.4699	-0.341917	
MW-6	29	341.517	288.614	0.150207	
MW-7R	29	147.345	156.595	2.04565	
MW-8	29	143.724	109.601	-0.464332	
TMW-09	29	394.517	303.909	-0.470094	
TMW-10	29	168.207	124.592	-0.632919	
TMW-13	29	35	66.4987	1.65347	
TMW-11	12	66.3333	62.9969	2.59127	

Parameter: Specific Conductivity, Field Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

Location	d Locations Obs.	Mean	Std. Dev.	Skewness	
MW-1R	29	2.80527	2.23322	-0.493444	
Complianc	e Locations	i			
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-2RR	29	4.7117	3.52034	-0.594386	
MW-3	29	4.04878	3.22954	-0.481939	
MW-4R	29	4.45869	3.29497	-0.647177	
MW-5	29	2.99428	2.21846	-0.632156	
MW-6	29	4.06554	3.01316	-0.628962	
MW-7R	29	3.47978	2.59114	-0.596108	
MW-8	29	3.52401	2.60504	-0.64525	
TMW-09	29	4.17796	3.09125	-0.640594	
TMW-10	29	3.63419	2.68347	-0.65225	
TMW-13	29	1.1937	2.15682	1.2196	
TMW-11	12	3.77526	1.27901	-2.17629	
All Locatio	n o				
All Locatio		Maan	Ctd Day	Ckeymana	
	Obs.	Mean	Std. Dev.	Skewness	
	331	3.56201	2.88494	-0.288707	

Wilcoxon Non-Parametric Analysis (Inter-Well)

Parameter: Barium, Total

Location: MW-4R

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total non detects is 2 Non detect rank is 1.5

Wilcoxon	Ranks			
Location MW-1R	Date 6/21/2010 12/1/2010 2/6/2012 8/30/2012 2/21/2013 8/29/2013 2/4/2014 11/3/2015 7/27/2015 2/11/2016 8/17/2016 3/24/2017 11/6/2017 3/28/2018 9/21/2018 3/8/2019 9/26/2019 3/19/2020 3/19/2020 3/19/2021 9/29/2021 3/28/2022 12/26/2022 3/20/2023 9/21/2023 3/27/2024 9/24/2024 3/24/2025	Conc. 90 161 200 610 140 72 131 ND<25 100 180 170 88 170 450 170 250 370 185 132 148 131 110 126 190 127 116 158 127 144	Rank 5 19 26 38 15 3 12 1.5 6 23 20 4 21 31 22 27 28 24 14 17 13 7 9 25 10 8 18 11 16	
MW-4R	6/21/2010 12/1/2010 2/6/2012 8/30/2012 2/21/2013 8/29/2013 2/4/2014 11/3/2014 2/3/2015 7/27/2015 2/11/2016 8/17/2016 3/24/2017 11/6/2017 3/28/2018	800 846 800 790 440 610 711 ND<25 590 620 810 656 660 630 600	54 57 55 52 30 39 49 1.5 35 41 56 45 46 42 36	

9/21/2018	630	43
3/8/2019	430	29
9/26/2019	601	37
3/19/2020	479	32
9/23/2020	797	53
3/19/2021	732	51
9/29/2021	870	58
3/28/2022	722	50
12/26/2022	699	48
3/20/2023	557	34
9/21/2023	615	40
3/27/2024	519	33
9/24/2024	650	44
3/24/2025	687	47

The Wilcoxon Statistic is 802.5

The Expected value is is 420.5

The Standard Deviation is 64.3033

The Z Score is 5.93282

The Standard Deviation adjusted for ties is 64.3023

The Z Score adjusted for ties is 5.93291

5.93282 > 2.326 indicating statistical significance at 1% level

5.93291 > 2.326 indicating statistical significance at 1% level when adjusted for ties

Parameter: Barium, Total **Location: TMW-09**

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total non detects is 2 Non detect rank is 1.5

Wilcoxon	Ranks		
Location	Date	Conc.	Rank
MW-1R	6/21/2010	90	5
	12/1/2010	161	19
	2/6/2012	200	27
	8/30/2012	610	32
	2/21/2013	140	15
	8/29/2013	72	3
	2/4/2014	131	12
	11/3/2014	ND<25	1.5
	2/3/2015	100	6
	7/27/2015	180	23
	2/11/2016	170	20
	8/17/2016	88	4
	3/24/2017	170	21
	11/6/2017	450	30
	3/28/2018	170	22
	9/21/2018	250	28
	3/8/2019	370	29
	9/26/2019	185	24
	3/19/2020	132	14
	9/23/2020	148	17
	3/19/2021	131	13
	9/29/2021	110	7
	3/28/2022	126	9
	12/26/2022	190	26
	3/20/2023	127	10
	9/21/2023	116	8
	3/27/2024	158	18
	9/24/2024	127	11
	3/24/2025	144	16
TMW-09	6/21/2010	580	31
	12/1/2010	742	33
	2/6/2012	1070	49
	8/30/2012	1010	44
	2/21/2013	770	34
	8/29/2013	800	35
	2/4/2014	894	37
	11/3/2014	ND<25	1.5
	2/3/2015	810	36
	7/27/2015	1100	51
	2/11/2016	910	38
	8/17/2016	965	40
	3/24/2017	186	25
	11/6/2017	1200	57
	3/28/2018	950	39

9/21/2018	990	42
3/8/2019	990	43
9/26/2019	1030	45
3/19/2020	981	41
9/23/2020	1170	56
3/19/2021	1030	46
9/29/2021	1100	52
3/28/2022	1100	53
12/26/2022	1040	47
3/20/2023	1070	50
9/21/2023	1040	48
3/27/2024	1110	54
9/24/2024	1240	58
3/24/2025	1120	55

The Wilcoxon Statistic is 805.5

The Expected value is is 420.5

The Standard Deviation is 64.3033

The Z Score is 5.97947

The Standard Deviation adjusted for ties is 64.3023

The Z Score adjusted for ties is 5.97957

5.97947 > 2.326 indicating statistical significance at 1% level

Parameter: Cadmium Location: MW-3

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Date 3/27/2024	Conc.	Rank	
3/27/2024		INGIIN	
3/2//202 4	ND<1	3.5	
9/24/2024	ND<1	3.5	
3/24/2025	ND<1	3.5	
3/27/2024	ND<1	3.5	
9/24/2024	ND<1	3.5	
3/24/2025	ND<1	3.5	
	3/27/2024 9/24/2024	3/27/2024 ND<1 9/24/2024 ND<1	3/27/2024 ND<1 3.5 9/24/2024 ND<1 3.5

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

Parameter: Cadmium Location: MW-4R

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	
MW-4R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

Parameter: Cadmium Location: MW-5

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	
MW-5	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cadmium Location: MW-6

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	
MW-6	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cadmium Location: MW-8

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	
MW-8	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

Parameter: Cadmium Location: TMW-09

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	
TMW-09	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

Parameter: Cadmium Location: TMW-10

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	
TMW-10	3/27/2024	ND<1	3.5	
	9/24/2024	ND<1	3.5	
	3/24/2025	ND<1	3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cadmium Location: TMW-11

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon	Ranks			
Location MW-1R	Date 3/27/2024 9/24/2024 3/24/2025	Conc. ND<1 ND<1 ND<1	Rank 3.5 3.5 3.5	
TMW-11	3/27/2024 9/24/2024 3/24/2025	ND<1 ND<1 ND<1	3.5 3.5 3.5	

The Wilcoxon Statistic is 4.5

The Expected value is is 4.5

The Standard Deviation is 2.29129

The Z Score is -0.218218

The Standard Deviation adjusted for ties is 0

The Z Score adjusted for ties is -1.#INF

-0.218218 < 2.326 indicating no statistical significance at 1% level

Parameter: Cobalt Location: MW-5

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 8 Non detect rank is 4.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	
MW-5	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	

The Wilcoxon Statistic is 8

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.144338

The Standard Deviation adjusted for ties is 0

^{-0.144338 &}lt; 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cobalt Location: MW-7R

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 8 Non detect rank is 4.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	
MW-7R	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	

The Wilcoxon Statistic is 8

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.144338

The Standard Deviation adjusted for ties is 0

^{-0.144338 &}lt; 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cobalt Location: MW-8

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 8 Non detect rank is 4.5

Wilcoxon				
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	
MW-8	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	

The Wilcoxon Statistic is 8

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.144338

The Standard Deviation adjusted for ties is 0

^{-0.144338 &}lt; 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cobalt Location: TMW-09

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 8 Non detect rank is 4.5

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	
TMW-09	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	

The Wilcoxon Statistic is 8

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.144338

The Standard Deviation adjusted for ties is 0

^{-0.144338 &}lt; 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cobalt Location: TMW-10

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 8 Non detect rank is 4.5

Wilcoxon Ranks							
Location	Date	Conc.	Rank				
MW-1R	9/21/2023	ND<5	4.5				
	3/27/2024	ND<5	4.5				
	9/24/2024	ND<5	4.5				
	3/24/2025	ND<5	4.5				
TMW-10	9/21/2023	ND<5	4.5				
	3/27/2024	ND<5	4.5				
	9/24/2024	ND<5	4.5				
	3/24/2025	ND<5	4.5				

The Wilcoxon Statistic is 8

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.144338

The Standard Deviation adjusted for ties is 0

^{-0.144338 &}lt; 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Cobalt Location: TMW-11

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 8 Non detect rank is 4.5

Wilcoxon	Ranks			
Location MW-1R	Date 9/21/2023	Conc. ND<5	Rank 4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	
TMW-11	9/21/2023	ND<5	4.5	
	3/27/2024	ND<5	4.5	
	9/24/2024	ND<5	4.5	
	3/24/2025	ND<5	4.5	

The Wilcoxon Statistic is 8

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.144338

The Standard Deviation adjusted for ties is 0

^{-0.144338 &}lt; 2.326 indicating no statistical significance at 1% level

^{-1.#}INF < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Zinc Location: MW-4R

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 7 Non detect rank is 4

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<10	4	
	3/27/2024	ND<10	4	
	9/24/2024	ND<10	4	
	3/24/2025	15	8	
MW-4R	9/21/2023	ND<10	4	
	3/27/2024	ND<10	4	
	9/24/2024	ND<10	4	
	3/24/2025	ND<10	4	

The Wilcoxon Statistic is 6

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.721688

The Standard Deviation adjusted for ties is 2

The Z Score adjusted for ties is -1.25

-0.721688 < 2.326 indicating no statistical significance at 1% level

Parameter: Zinc Location: MW-5

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 6 Non detect rank is 3.5

Wilcoxon				
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<10	3.5	
	3/27/2024	ND<10	3.5	
	9/24/2024	ND<10	3.5	
	3/24/2025	15	8	
MW-5	9/21/2023	12.3	7	
	3/27/2024	ND<10	3.5	
	9/24/2024	ND<10	3.5	
	3/24/2025	ND<10	3.5	

The Wilcoxon Statistic is 7.5

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.288675

The Standard Deviation adjusted for ties is 2.64575

The Z Score adjusted for ties is -0.377964

-0.288675 < 2.326 indicating no statistical significance at 1% level

Parameter: Zinc Location: MW-7R

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 7 Non detect rank is 4

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<10	4	
	3/27/2024	ND<10	4	
	9/24/2024	ND<10	4	
	3/24/2025	15	8	
MW-7R	9/21/2023	ND<10	4	
	3/27/2024	ND<10	4	
	9/24/2024	ND<10	4	
	3/24/2025	ND<10	4	

The Wilcoxon Statistic is 6

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.721688

The Standard Deviation adjusted for ties is 2

The Z Score adjusted for ties is -1.25

-0.721688 < 2.326 indicating no statistical significance at 1% level

Parameter: Zinc Location: MW-8

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 7 Non detect rank is 4

Wilcoxon Ranks							
Location	Date	Conc.	Rank				
MW-1R	9/21/2023	ND<10	4				
	3/27/2024	ND<10	4				
	9/24/2024	ND<10	4				
	3/24/2025	15	8				
MW-8	9/21/2023	ND<10	4				
	3/27/2024	ND<10	4				
	9/24/2024	ND<10	4				
	3/24/2025	ND<10	4				

The Wilcoxon Statistic is 6

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.721688

The Standard Deviation adjusted for ties is 2

The Z Score adjusted for ties is -1.25

-0.721688 < 2.326 indicating no statistical significance at 1% level

Parameter: Zinc Location: TMW-10

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 7 Non detect rank is 4

Wilcoxon	Ranks			
Location	Date	Conc.	Rank	
MW-1R	9/21/2023	ND<10	4	
	3/27/2024	ND<10	4	
	9/24/2024	ND<10	4	
	3/24/2025	15	8	
TMW-10	9/21/2023	ND<10	4	
	3/27/2024	ND<10	4	
	9/24/2024	ND<10	4	
	3/24/2025	ND<10	4	

The Wilcoxon Statistic is 6

The Expected value is is 8

The Standard Deviation is 3.4641

The Z Score is -0.721688

The Standard Deviation adjusted for ties is 2

The Z Score adjusted for ties is -1.25

-0.721688 < 2.326 indicating no statistical significance at 1% level

Parameter: pH, field Location: TMW-11

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total non detects is 11 Non detect rank is 6

Wilcoxon	Ranks		
Location	Date	Conc.	Rank
MW-1R	6/21/2010	ND<0	6
	12/1/2010	ND<0	6
	2/6/2012	ND<0	6
	8/30/2012	ND<0	6
	2/21/2013	ND<0	6
	8/29/2013	ND<0	6
	2/4/2014	ND<0	6
	11/3/2014	ND<0	6
	2/3/2015	ND<0	6
	7/27/2015	ND<0	6
	2/11/2016	6.2	40
	8/17/2016	7	41
	3/24/2017	6.05	37
	11/6/2017	6.07	38
	3/28/2018	6.15	39
	9/21/2018	5.6	24
	3/8/2019	6	35
	9/26/2019	5.3	19
	3/19/2020	5.9	34
	9/23/2020	5.7	27
	3/19/2021	5. <i>1</i> 5.4	20
	9/29/2021	5. 4 5.7	28
	3/28/2022	5.7 5.7	29
	12/26/2022	5. <i>1</i> 5.8	32
	3/20/2023	5.0 5.1	15
	9/21/2023	6	36
	3/27/2024	5.4	21
	9/24/2024		30
		5.7	
	3/24/2025	5.8	33
TMW-11	9/26/2019	5	13
	3/19/2020	ND<0	6
	9/23/2020	5.1	16
	3/19/2021	4.8	12
	9/29/2021	5.7	31
	3/28/2022	5.6	25
	12/26/2022	5	14
	3/20/2023	5.6	26
	9/21/2023	5.4	22
	3/27/2024	5.2	17
	9/24/2024	5.5	23
	3/24/2025	5.2	18

The Expected value is is 174
The Standard Deviation is 34.8999
The Z Score is -0.845276
The Standard Deviation adjusted for ties is 34.5638

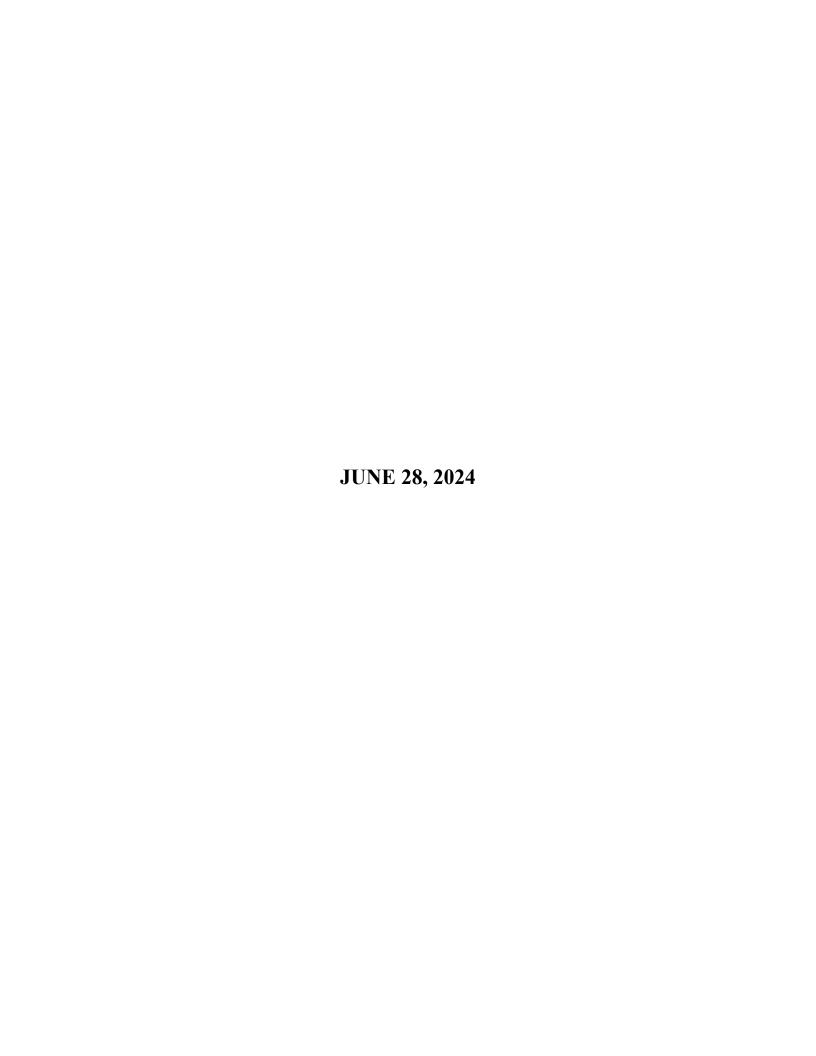
- -0.845276 < 2.326 indicating no statistical significance at 1% level
- -0.853493 < 2.326 indicating no statistical significance at 1% level when adjusted for ties

Parameter: Specific Conductivity, Field Location: TMW-11

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total non detects is 12 Non detect rank is 6.5


Wilcoxon	Ranks		
Location	Date	Conc.	Rank
MW-1R	6/21/2010	ND<0	6.5
	12/1/2010	ND<0	6.5
	2/6/2012	ND<0	6.5
	8/30/2012	ND<0	6.5
	2/21/2013	ND<0	6.5
	8/29/2013	ND<0	6.5
	2/4/2014	ND<0	6.5
	11/3/2014	ND<0	6.5
	2/3/2015	ND<0	6.5
	7/27/2015	ND<0	6.5
	2/11/2016	79	23
	8/17/2016	126	40
	3/24/2017	89	27
	11/6/2017	97	38
	3/28/2018	94	35
	9/21/2018	86	26
	3/8/2019	102	39
	9/26/2019	94	36
	3/19/2020	96	37
	9/23/2020	92	32
	3/19/2021	92	33
	9/29/2021	ND<0	6.5
	3/28/2022	92	34
	12/26/2022	89	28
	3/20/2023	91	31
	9/21/2023	79	24
	3/27/2024	90	30
	9/24/2024	89	29
	3/24/2025	84	25
TMW-11	9/26/2019	56	19
	3/19/2020	ND<0	6.5
	9/23/2020	46	13
	3/19/2021	48	15
	9/29/2021	53	18
	3/28/2022	259	41
	12/26/2022	56	20
	3/20/2023	46	14
	9/21/2023	49	16
	3/27/2024	50	17
	9/24/2024	64	21
	3/24/2025	69	22

The Expected value is is 174
The Standard Deviation is 34.8999
The Z Score is -0.859602

The Standard Deviation adjusted for ties is 34.4624

- -0.859602 < 2.326 indicating no statistical significance at 1% level
- -0.870514 < 2.326 indicating no statistical significance at 1% level when adjusted for ties

APPENDIX CMETHANE MONITORING FIELD DATA SHEETS

Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time:
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP(S
Climate and Physical Conditions: • Ambient Temperature: 80 °F
General Weather Condition
General Soil Moisture Condition □ DRY
Condition of Surrounding Area (stressed vegetation, etc.)
■ Water Present in Probe ☐ YES ☒ NO ■ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane by Volume
Notes:
Sampler's Signature:

Facil	ity: Newberry (County Landfill			
Sam	pling Date: Jur	ne 28, 2024	•		
Sam	pling Time:	10:50	⊠ A.M. □ P.M.		
Sam	pler's Name: <u>T</u>	. Ryan Merritt			
Mon	itoring Equipn	nent: Gas Measurement Instrur	ments GT 40		
Equi	pment Calibra	tion (By): Safety Plus, Inc.			
Next	Equipment Ca	alibration (Date): September 2	4, 2024		
GMF □ □	itoring Point L On-Site Structur Site Boundary Off-Site Structur	re			
Clim •	ate and Physic Ambient Temp	al Conditions: erature: 80 °F			
•		WARM □ COOL □ COLD □ CLOUDY □ LIGHT RAIN □			
•		loisture Condition 401ST □ WET			
•	• Condition of Surrounding Area (stressed vegetation, etc.)				
•	Water Present	in Probe 🗌 YES 🖾 NO			
•		tions of GMP SEALED CLEARLY LAB EVERELY RUSTED, WEAK FO			
Meas	surements:	š <u> </u>			
•	Methane:	∠	LUME		
Note	s:				
Samı	oler's Signature	TR. Out			

Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time: O'(B
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP35 ☐ On-Site Structure ☑ Site Boundary ☐ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 80°F
General Weather Condition
General Soil Moisture Condition □ DRY
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: METHANE BY VOLUME
Notes:
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time: Sampling Time: A.M. P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 80°F
General Weather Condition
● General Soil Moisture Condition DRY MOIST WET
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
• Methane: 🛇 🦟 METHANE BY VOLUME
Notes:
Sampler's Signature: (Ryllity)

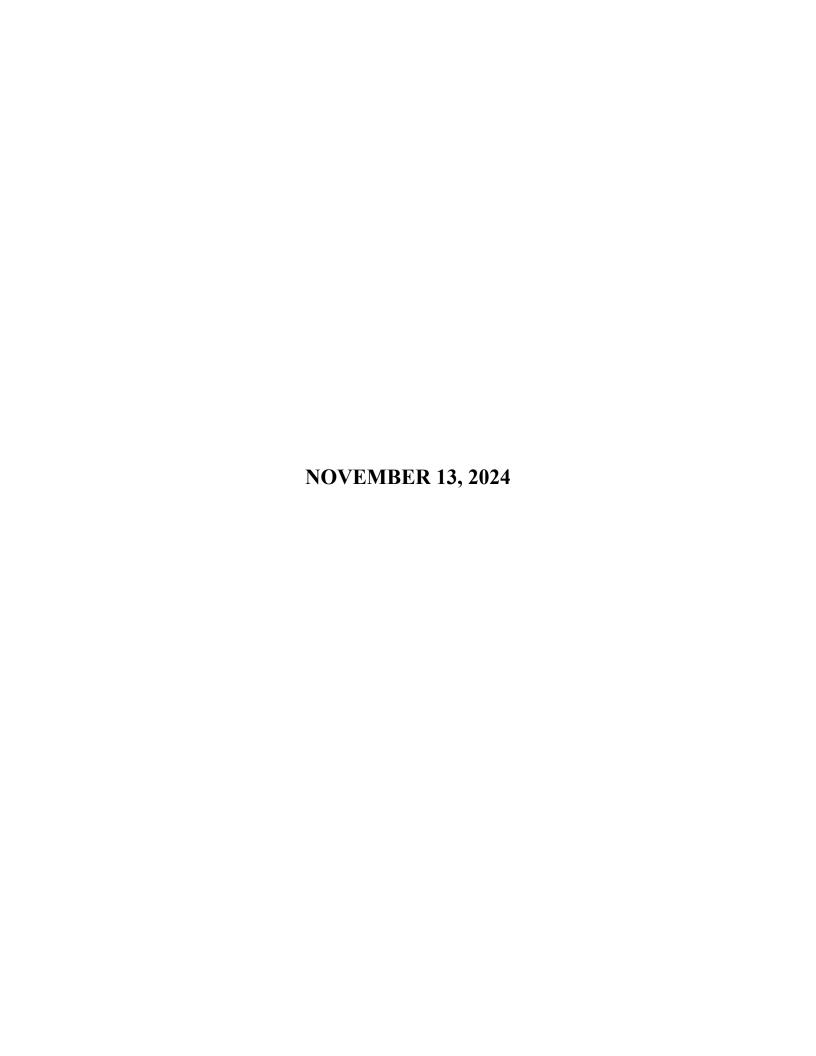
Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time: [0:03
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP ☐ On-Site Structure Site Boundary Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: & Poof
General Weather Condition
General Soil Moisture Condition □ DRY
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Ø % Methane by Volume
Notes:
Sampler's Signature:

Faci	lity: Newberry (County Landfill		
Sam	pling Date: Jun	e 28, 2024		
Sam	pling Time:	9:52	🖂 A.M. 🔲 P.M.	
Sam	pler's Name: <u>T</u>	Ryan Merritt		
Mon	itoring Equipm	ent: Gas Measurement Instrum	nents GT 40	
Equ	ipment Calibra	tion (By): Safety Plus, Inc.		
Next	- : Equipment Ca	libration (Date): September 24	1, 2024	
GMI □ ⊠	oitoring Point L PSS On-Site Structur Site Boundary Off-Site Structur	re		
Clin	ate and Physica Ambient Temp	al Conditions: erature: 80 °F		
•		WARM 🗌 COOL 🗌 COLD 🗍 CLOUDY 📗 LIGHT RAIN 🗌		
•	General Soil Moisture Condition □ DRY			
•	Condition of Surrounding Area (stressed vegetation, etc.)			
•	Water Present i	n Probe 🗌 YES 🔀 NO		
•	_	ions of GMP ☑ SEALED ☑ CLEARLY LAB EVERELY RUSTED, WEAK FOU		
Mea	surements:	6		
•	Methane:	O METHANE BY VOL	.UME	
Note	es:			
-				
8				
Sam	pler's Signature:	TR CUT	7	

Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time: $9:52$ \boxtimes A.M. \square P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 80 °F
General Weather Condition
General Soil Moisture Condition □ DRY
 Condition of Surrounding Area (stressed vegetation, etc.)
• Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: ∅
Notes:
Sampler's Signature:

Facilit	y: Newberry	County Landill	
Sampl	ing Date: <u>Ju</u>	une 28, 2024	
Sampl	ing Time: _	9:40	\square A.M. \square P.M.
Sampl	er's Name:_	T. Ryan Merritt	
Monit	oring Equip	ment: Gas Measurement Instrun	nents GT 40
Equip	ment Calibr	ration (By): Safety Plus, Inc.	-
Next E	Equipment C	Calibration (Date): September 24	1, 2024
GMP_ ☐ O ⊠ Si	oring Point 65 n-Site Struct te Boundary ff-Site Struct	ure	
	•	ical Conditions: uperature: 90 °F	
• (☐ HOT ☐ SUNNY	her Condition WARM COOL COLD CLOUDY LIGHT RAIN CALM	
• (Moisture Condition MOIST □ WET	
• (Condition of	Surrounding Area (stressed veget	ation, etc.)
• \(\bar{V}\)	Vater Present	t in Probe 🗌 YES 🔀 NO	
• (LOCKED	litions of GMP SEALED CLEARLY LAB SEVERELY RUSTED, WEAK FOU	
	rements:		
• N	/lethane:	⊠ % METHANE BY VOL	UME
Notes:			
·			
Sample	er's Signatur	e: IRillett	

Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time: $9'40$ \boxtimes A.M. \square P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP □ On-Site Structure □ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 80 °F
General Weather Condition
General Soil Moisture Condition □ DRY
• Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane by Volume
Notes:
Sampler's Signature:



Facility: Ne	wberry County	Landfill_		
Sampling D	ate: June 28, 20)24		
Sampling T	ime:	10:55	\(\times \text{A.M.} \) \(\times \text{P} \)	.M.
Sampler's N	lame: T. Ryan I	Merritt		
Monitoring	Equipment: G	as Measurement Instrum	nents GT 40	
Equipment	Calibration (B	y): Safety Plus, Inc.		.
Next Equip	ment Calibratio	on (Date): September 24	1, 2024	
Monitoring GMP	Structure undary	:		
	I Physical Cond nt Temperature			
☐ H	57. 37	☐ COOL ☐ COLD ☐ DY ☐ LIGHT RAIN ☐		
	ll Soil Moisture RY □ MOIST			
• Condit	ion of Surround	ing Area (stressed veget	ation, etc.)	
• Water	Present in Probe	e ☐ YES ⊠ NO		
LC		LED 🗌 CLEARLY LAB	ELED JNDATION, ETC.)	
Measureme				
Methai	ne: O	_ 🛛 % METHANE BY VOI	LUME	
Notes:				
V.				
Sampler's S	ignature:	1 R Mit	7	

Facility: Newberry County Landfill
Sampling Date: June 28, 2024
Sampling Time:
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): September 24, 2024
Monitoring Point Location: GMP 7□ □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 80 °F
General Weather Condition
General Soil Moisture Condition □ DRY □ MOIST □ WET
• Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane by Volume
Notes:
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP \ S □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 60 °F
General Weather Condition
General Soil Moisture Condition
• Condition of Surrounding Area (stressed vegetation, etc.)
• Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: • Methane: ⊘
Notes:
Sampler's Signature: Allelett

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: $2:25$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 66°F
General Weather Condition
General Soil Moisture Condition □ DRY □ MOIST □ WET
• Condition of Surrounding Area (stressed vegetation, etc.)
 Water Present in Probe ☐ YES ☒ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane By Volume
Notes:
Sampler's Signature: CRULH

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: $3:25$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP35 □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 62°F
General Weather Condition
General Soil Moisture Condition □ DRY □ MOIST □ WET
• Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane by Volume
Notes:
Sampler's Signature: All the sample of the

Facility: Newberry County Landfil	1_	
Sampling Date: November 13, 20	24	
Sampling Time:	29	\square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt		
Monitoring Equipment: Gas Me	asurement Instruments G7	Γ 40
Equipment Calibration (By): Saf		
Next Equipment Calibration (Da		
Monitoring Point Location: GMP ○ On-Site Structure Site Boundary Off-Site Structure		
Climate and Physical Conditions • Ambient Temperature: 62		
General Weather Condition] LIGHT RAIN □ HEAVY	Y RAIN
● Condition of Surrounding Ar		c.)
Water Present in Probe ☐ Y General Conditions of GMP ☐ LOCKED ☐ SEALED [☐ OTHER (SEVERELY RU	CLEARLY LABELED	ON, ETC.)
Measurements:		
Methane: ⊠	% METHANE BY VOLUME	
Notes:		
Sampler's Signature:	Zulitt	

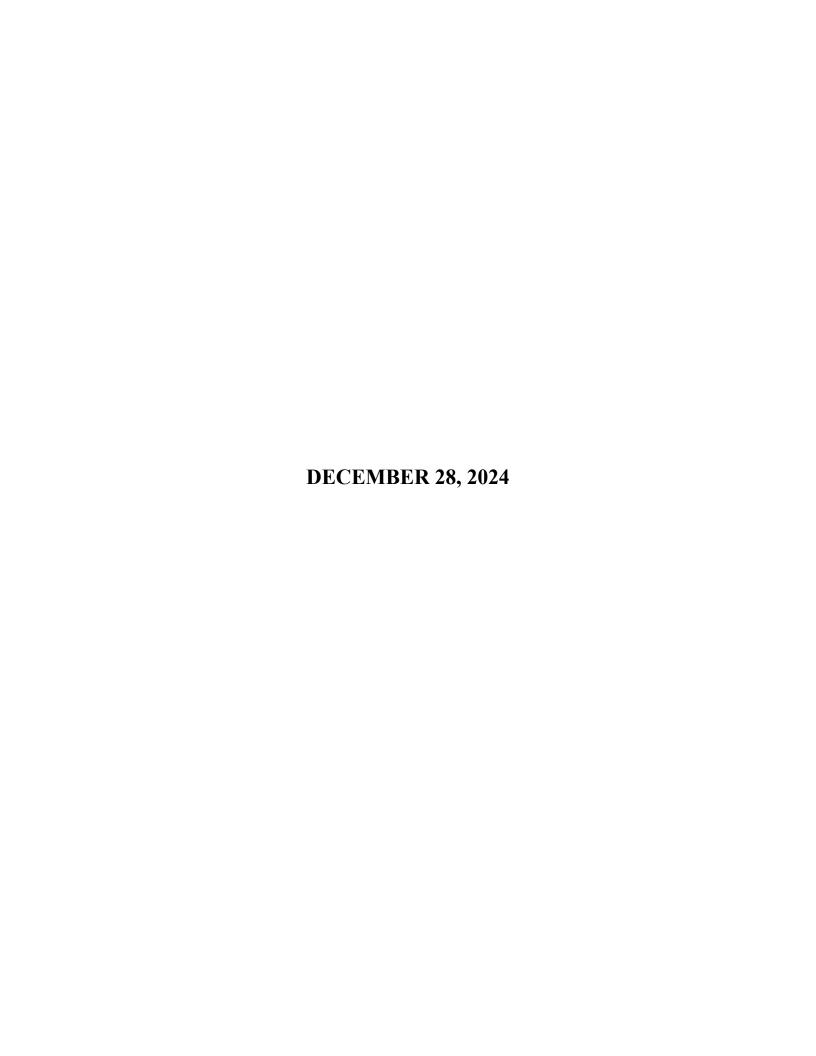
Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: A.M. \(\times \) P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 62 °F
General Weather Condition
● General Soil Moisture Condition □ DRY □ MOIST □ WET
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: • Methane: N/A Methane By Volume
Notes: GMP 4 could not be located. Likely damaged due to a falling oak tree from Hurricene Helene
Sampler's Signature: Authorized Texture:

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: 3!(8
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 62°F
General Weather Condition
General Soil Moisture Condition □ DRY
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: ■ Methane:
Notes:
A.V
Sampler's Signature: Rulett

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: 3!18 A.M. \(\text{P.M.}
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP SD □ On-Site Structure Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 62°F
General Weather Condition
General Soil Moisture Condition □ DRY
• Condition of Surrounding Area (stressed vegetation, etc.)
 Water Present in Probe ☐ YES ☐ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
● Methane: 🖂 % Methane by Volume
Notes:
Sampler's Signature:

Sampling Date: November 13, 2024 Sampling Time: 3!05	
Sampling Time: 3!05 A.M. P.M. Sampler's Name: T. Ryan Merritt Monitoring Equipment: Gas Measurement Instruments GT 40 Equipment Calibration (By): Safety Plus, Inc. Next Equipment Calibration (Date): October 4, 2025 Monitoring Point Location: GMP	Facility: Newberry County Landfill
Sampler's Name: T. Ryan Merritt Monitoring Equipment: Gas Measurement Instruments GT 40 Equipment Calibration (By): Safety Plus, Inc. Next Equipment Calibration (Date): October 4, 2025 Monitoring Point Location: GMP	Sampling Date: November 13, 2024
Monitoring Equipment: Gas Measurement Instruments GT 40 Equipment Calibration (By): Safety Plus, Inc. Next Equipment Calibration (Date): October 4, 2025 Monitoring Point Location: GMP 65 On-Site Structure Site Boundary Off-Site Structure Climate and Physical Conditions: • Ambient Temperature: 62°F • General Weather Condition □ HOT WARM COOL COLD SNOW □ SUNNY CLOUDY LIGHT RAIN HEAVY RAIN □ BREEZY CALM • General Soil Moisture Condition □ DRY MOIST WET • Condition of Surrounding Area (stressed vegetation, etc.) • Water Present in Probe YES NO • General Conditions of GMP □ LOCKED SEALED CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.) Measurements: • Methane: Methane: Methane By Volume	Sampling Time: $3!05$ \square A.M. \boxtimes P.M.
Equipment Calibration (By): Safety Plus, Inc. Next Equipment Calibration (Date): October 4, 2025 Monitoring Point Location: GMP _	Sampler's Name: T. Ryan Merritt
Monitoring Point Location: GMP _ 65	Monitoring Equipment: Gas Measurement Instruments GT 40
Monitoring Point Location: GMP	Equipment Calibration (By): Safety Plus, Inc.
GMP On-Site Structure Site Boundary Off-Site Structure Climate and Physical Conditions: • Ambient Temperature: C ° F • General Weather Condition	Next Equipment Calibration (Date): October 4, 2025
 Ambient Temperature: 62°F General Weather Condition	Site Boundary Sit
 HOT	
ORY ☐ MOIST ☐ WET Condition of Surrounding Area (stressed vegetation, etc.) Water Present in Probe ☐ YES ☒ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.) Measurements: Methane: ☐ ☒ % METHANE BY VOLUME	☐ HOT ☐ WARM ☐ COOL ☐ COLD ☐ SNOW ☐ SUNNY ☐ CLOUDY ☐ LIGHT RAIN ☐ HEAVY RAIN
Water Present in Probe ☐ YES ☒ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.) Measurements: Methane: ☐ ☒ % METHANE BY VOLUME	DRY MOIST WET
General Conditions of GMP	
Methane: Methane by Volume	General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED
Notes:	_
	Notes:
Sampler's Signature: 1 Rullty	Sampler's Signature: ARULTY

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: $3:05$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 62°F
General Weather Condition
General Soil Moisture Condition □ DRY □ MOIST □ WET
 Condition of Surrounding Area (stressed vegetation, etc.)
 Water Present in Probe ☐ YES ☒ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane:
Notes:
Sampler's Signature: (Rellett



Facility: Newberry County Landfill	
Sampling Date: November 13, 2024	
Sampling Time: 2:35	A.M. P.M.
Sampler's Name: T. Ryan Merritt	
Monitoring Equipment: Gas Measurement Instrum	ents GT 40
Equipment Calibration (By): Safety Plus, Inc.	
Next Equipment Calibration (Date): October 4, 20	25
Monitoring Point Location: GMP	
Climate and Physical Conditions: • Ambient Temperature: 60°F	
General Weather Condition	
 General Soil Moisture Condition	ation, etc.)
Water Present in Probe ☐ YES ☒ NO	
General Conditions of GMP	
Measurements:	
Methane:	UME
Notes:	
Sampler's Signature:	
The state of the s	

Facility: Newberry County Landfill
Sampling Date: November 13, 2024
Sampling Time: 2!35 A.M. \(\times P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP □ On-Site Structure □ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 60°F
General Weather Condition
General Soil Moisture Condition DRY MOIST WET
Condition of Surrounding Area (stressed vegetation, etc.)
• Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: Methane: ✓ Methane BY VOLUME
Notes:
Sampler's Signature: (Rull)

Facilit	ty: Newberry County Landfill	
Sampl	oling Date: December 31, 2024	
Sampl	ling Time: 12:30	\square A.M. \boxtimes P.M.
Sampl	oler's Name: T. Ryan Merritt	
Monit	toring Equipment: Gas Measurement Instrum	ents GT 40
Equip	oment Calibration (By): Safety Plus, Inc.	
Next E	Equipment Calibration (Date): October 4, 20:	25
GMP_ ☐ O ⊠ Si	Itoring Point Location: On-Site Structure Site Boundary Off-Site Structure	
	Ambient Temperature: 46°F	
• (General Weather Condition HOT WARM COOL COLD SUNNY CLOUDY LIGHT RAIN BREEZY CALM	
• (General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET	
• (Condition of Surrounding Area (stressed vegeta	ation, etc.)
• 7	Water Present in Probe TYES NO	
• (General Conditions of GMP ☑ LOCKED ☐ SEALED ☐ CLEARLY LABE ☐ OTHER (SEVERELY RUSTED, WEAK FOU	
	urements:	
• N	Methane: 🛇 🛭 % METHANE BY VOL	UME
Notes:		
Sampl	ler's Signature:	

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time:
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP On-Site Structure Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 46 °F
General Weather Condition
● General Soil Moisture Condition DRY MOIST WET
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane By Volume
Notes:
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time: $2:10$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP3_5 □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 52 °F
General Weather Condition
General Soil Moisture Condition
Condition of Surrounding Area (stressed vegetation, etc.)
• Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane By Volume
Notes:
Sampler's Signature: CRULU

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time:
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP3_ D □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 52°F
General Weather Condition
 General Soil Moisture Condition
 Water Present in Probe ☐ YES ☒ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: Methane: \times \% Methane by Volume
Notes:
Sampler's Signature: Multi

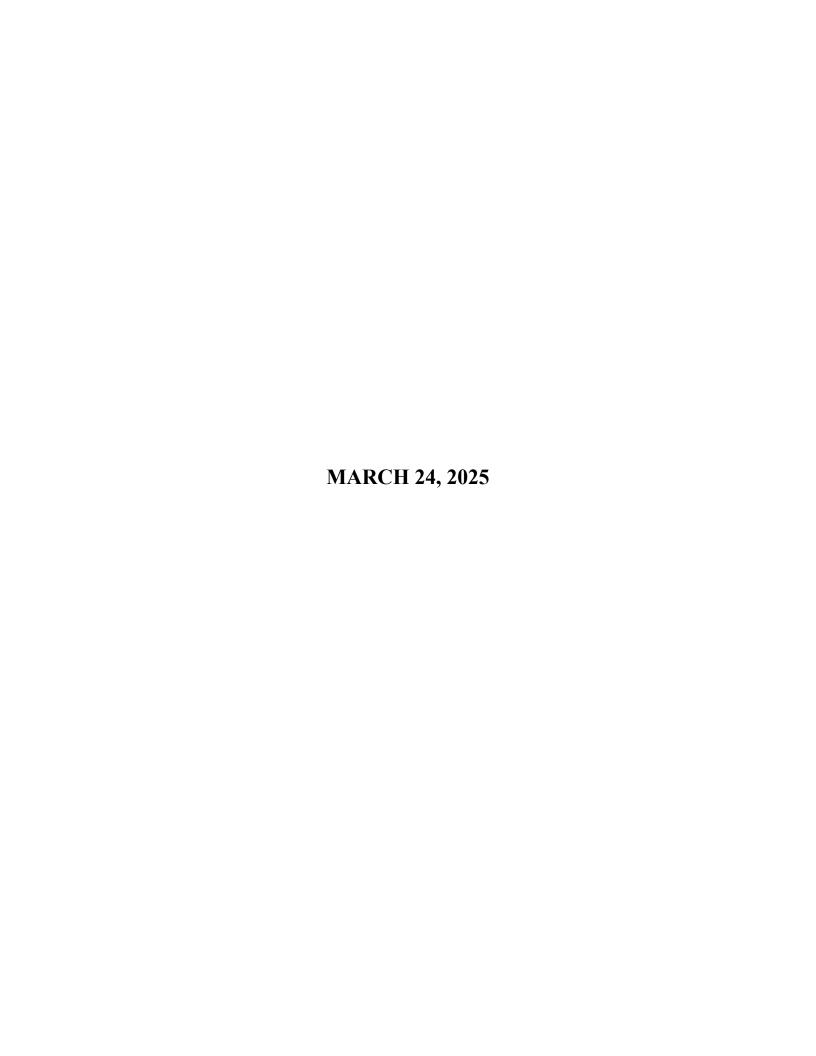
Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time: [:30
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 50 °F
General Weather Condition
 General Soil Moisture Condition
 Water Present in Probe ☐ YES ☐ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: • Methane: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Notes: 6MP 4 could not be located. Likely dencycles by a fullen pak tree from Hungiane Helene.
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time: \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMPSS □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 50 °F
General Weather Condition
 General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane By Volume
Notes:
Sampler's Signature: CRUMT

Facility: Newberry County Landfill	
Sampling Date: December 31, 2024	ž
Sampling Time:	□ A.M. ⊠ P.M.
Sampler's Name: T. Ryan Merritt	
Monitoring Equipment: Gas Measurement Instrur	ments GT 40
Equipment Calibration (By): Safety Plus, Inc.	
Next Equipment Calibration (Date): October 4, 20	025
Monitoring Point Location: GMP	
Climate and Physical Conditions: • Ambient Temperature: 50 °F	
General Weather Condition	
 General Soil Moisture Condition □ DRY □ MOIST □ WET 	
Condition of Surrounding Area (stressed veget)	ation, etc.)
● Water Present in Probe ☐ YES ☒ NO	
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LAB ☐ OTHER (SEVERELY RUSTED, WEAK FOR 	
Measurements:	
Methane: ✓	LUME
Notes:	
Sampler's Signature:	6.

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time: \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP S On-Site Structure ⊠ Site Boundary Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 50 °F
General Weather Condition
General Soil Moisture Condition □ DRY □ MOIST □ WET
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: ✓
Notes:
Sampler's Signature: (Rull)

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time: \(\text{!09} \) A.M. \(\text{P.M.} \)
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP 6▷ □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 50 °F
General Weather Condition
 General Soil Moisture Condition DRY MOIST WET Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
• General Conditions of GMP □LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane:
Notes:
Sampler's Signature: Audit



Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time:
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 46 °F
General Weather Condition
General Soil Moisture Condition □ DRY □ MOIST □ WET
• Condition of Surrounding Area (stressed vegetation, etc.)
• Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane By Volume
Notes:
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: December 31, 2024
Sampling Time: 2:37 A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP 7
Climate and Physical Conditions: • Ambient Temperature: 46°F
General Weather Condition
• General Soil Moisture Condition □ DRY □ MOIST □ WET
 Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: • Methane: ∅ % Methane by Volume
Notes:
Sampler's Signature:

Facility: Newberry County Landfil	<u> </u>
Sampling Date: March 19, 2025	
Sampling Time: 2:20	□ A.M. ⊠ P.M.
Sampler's Name: T. Ryan Merritt	
Monitoring Equipment: Gas Mea	surement Instruments GT 40
Equipment Calibration (By): Safe	ty Plus, Inc.
Next Equipment Calibration (Dat	e): October 4, 2025
Monitoring Point Location: GMP S □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure	
Climate and Physical Conditions: • Ambient Temperature: 82.	
General Weather Condition	OL COLD SNOW LIGHT RAIN HEAVY RAIN
 General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET 	on
Condition of Surrounding Are	a (stressed vegetation, etc.)
• Water Present in Probe YE	S 🛮 NO
General Conditions of GMP	CLEARLY LABELED TED, WEAK FOUNDATION, ETC.)
Measurements:	
Methane: ○ ⊠ %	METHANE BY VOLUME
Notes:	
Sampler's Signature:	1 lath

Facility: Newberry County Landfill
Sampling Date: March 19, 2025
Sampling Time: 2:20
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: <u>82</u> °F
General Weather Condition
 General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET
• Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: METHANE BY VOLUME
Notes:
Sampler's Signature:

Facility: Newberry County Landfill	
Sampling Date: March 19, 2025	
Sampling Time: A.M. \(\times \) P.N	M.
Sampler's Name: T. Ryan Merritt	
Monitoring Equipment: Gas Measurement Instruments GT 40	
Equipment Calibration (By): Safety Plus, Inc.	
Next Equipment Calibration (Date): October 4, 2025	
Monitoring Point Location: GMP 3 5 ☐ On-Site Structure ☑ Site Boundary ☐ Off-Site Structure	
Climate and Physical Conditions: • Ambient Temperature: 82 °F	
General Weather Condition	
 General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET 	
• Condition of Surrounding Area (stressed vegetation, etc.)	
Water Present in Probe ☐ YES ☒ NO	
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.) 	
Measurements:	
Methane: Methane By Volume	
Notes:	
Sampler's Signature:	

Facility: Newberry County Landfill
Sampling Date: March 19, 2025
Sampling Time: A.M. \(\times \) P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP3
Climate and Physical Conditions: • Ambient Temperature: <u>92</u> °F
General Weather Condition
• General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET
Condition of Surrounding Area (stressed vegetation, etc.)
• Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane By Volume
Notes:
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: March 19, 2025
Sampling Time: $3:12$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP □ On-Site Structure ⊠ Site Boundary □ Off-Site Structure
Climate and Physical Conditions: • Ambient Temperature: 92_°F
 General Weather Condition ⋈ HOT □ WARM □ COOL □ COLD □ SNOW ⋈ SUNNY □ CLOUDY □ LIGHT RAIN □ HEAVY RAIN ⋈ BREEZY □ CALM
 General Soil Moisture Condition
 Water Present in Probe ☐ YES ☒ NO General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements: ■ Methane: Ø % Methane by Volume
Notes:
Sampler's Signature:

Facility: Newberry County Landfill
Sampling Date: March 19, 2025
Sampling Time: $3:05$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: 52°F
General Weather Condition
 General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET
• Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: Methane by Volume
Notes:
Sampler's Signature:

Facil	ility: Newberry County Landfill	
Samp	npling Date: March 19, 2025	
Samp	npling Time: 3:05	\square A.M. \boxtimes P.M.
Samp	npler's Name: T. Ryan Merritt	
Moni	nitoring Equipment: Gas Measurement Instruments	GT 40
Equi	uipment Calibration (By): Safety Plus, Inc.	
Next	kt Equipment Calibration (Date): October 4, 2025	
GMP □ 0 ⊠ 3	nitoring Point Location: [P	
	mate and Physical Conditions: Ambient Temperature: <u>62</u> °F	
•	General Weather Condition ☐ HOT ☐ WARM ☐ COOL ☐ COLD ☐ SNO ☐ SUNNY ☐ CLOUDY ☐ LIGHT RAIN ☐ HEA ☐ BREEZY ☐ CALM	
•	General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET	
•	Condition of Surrounding Area (stressed vegetation,	etc.)
•	Water Present in Probe ☐ YES ☒ NO	-
•	General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDA	TION, ETC.)
	asurements:	
•	Methane: \(\sum_{\text{o}} \) \(\text{METHANE BY VOLUME} \)	
Notes	tes:	
Samp	npler's Signature:	-

Facil	ility: Newberry County Landfill	
Sam	npling Date: March 19, 2025	
Sam	npling Time: 2:57	\square A.M. \boxtimes P.M.
Sam	npler's Name: T. Ryan Merritt	
Mon	nitoring Equipment: Gas Measurement Instrume	ents GT 40
Equi	ipment Calibration (By): Safety Plus, Inc.	
Next	t Equipment Calibration (Date): October 4, 202	5
GMF □ ⊠	nitoring Point Location: [P	
Clim	mate and Physical Conditions: Ambient Temperature: <u>82</u> °F	
•	General Weather Condition ☐ HOT ☐ WARM ☐ COOL ☐ COLD ☐ S ☐ SUNNY ☐ CLOUDY ☐ LIGHT RAIN ☐ S ☐ BREEZY ☐ CALM	
•	General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET	
•	Condition of Surrounding Area (stressed vegetat	ion, etc.)
•	Water Present in Probe ☐ YES ☒ NO	
•	General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABER ☐ OTHER (SEVERELY RUSTED, WEAK FOUR	
Mea	asurements:	
•	Methane: \(\sqrt{O} \) \(\text{METHANE BY VOLU} \)	ME
Note	es:	
Samj	npler's Signature:	

Facility: Newberry County Landfill	
Sampling Date: March 19, 2025	
Sampling Time: $2:57$ \square A.M. \boxtimes P.M.	
Sampler's Name: T. Ryan Merritt	
Monitoring Equipment: Gas Measurement Instruments GT 40	
Equipment Calibration (By): Safety Plus, Inc.	
Next Equipment Calibration (Date): October 4, 2025	
Monitoring Point Location: GMP	
Climate and Physical Conditions: • Ambient Temperature: 82_°F	
General Weather Condition	
 General Soil Moisture Condition 	
Condition of Surrounding Area (stressed vegetation, etc.)	
Water Present in Probe ☐ YES ☒ NO	
● General Conditions of GMP □ LOCKED □ SEALED □ CLEARLY LABELED □ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)	
Measurements:	
Methane: ∅	
Notes:	
Sampler's Signature:	

Facility	Newberry County Landfill	
Samplin	g Date: March 19, 2025	
Samplir	g Time: 2:25	\square A.M. \boxtimes P.M.
Sample	's Name: T. Ryan Merritt	
Monito	ing Equipment: Gas Measurement Instrum	ents GT 40
Equipm	ent Calibration (By): Safety Plus, Inc.	
Next Eq	uipment Calibration (Date): October 4, 202	25
GMP_ ☐ On- ⊠ Site	ring Point Location: 75 Site Structure Boundary -Site Structure	
	and Physical Conditions: abient Temperature: <u>82</u> °F	
	neral Weather Condition HOT WARM COOL COLD SUNNY CLOUDY LIGHT RAIN BREEZY CALM	
	neral Soil Moisture Condition DRY MOIST WET	
• Co	ndition of Surrounding Area (stressed vegeta	tion, etc.)
• W	ter Present in Probe YES NO	
	neral Conditions of GMP LOCKED	
Measur	_	
• Me	thane: 💆 🔀 % Methane by Volu	JME
Notes:		
46		
Sampler	's Signature:	

Facility: Newberry County Landfill
Sampling Date: March 19, 2025
Sampling Time: $2:25$ \square A.M. \boxtimes P.M.
Sampler's Name: T. Ryan Merritt
Monitoring Equipment: Gas Measurement Instruments GT 40
Equipment Calibration (By): Safety Plus, Inc.
Next Equipment Calibration (Date): October 4, 2025
Monitoring Point Location: GMP
Climate and Physical Conditions: • Ambient Temperature: <u>\$2</u> °F
 General Weather Condition ⋈ HOT □ WARM □ COOL □ COLD □ SNOW ⋈ SUNNY □ CLOUDY □ LIGHT RAIN □ HEAVY RAIN ⋈ BREEZY □ CALM
 General Soil Moisture Condition ☑ DRY ☐ MOIST ☐ WET
Condition of Surrounding Area (stressed vegetation, etc.)
Water Present in Probe ☐ YES ☒ NO
 General Conditions of GMP ☐ LOCKED ☐ SEALED ☐ CLEARLY LABELED ☐ OTHER (SEVERELY RUSTED, WEAK FOUNDATION, ETC.)
Measurements:
Methane: METHANE BY VOLUME
Notes:
Sampler's Signature:

